Suppr超能文献

骨科软组织与骨界面的下一代组织工程

Next Generation Tissue Engineering of Orthopedic Soft Tissue-to-Bone Interfaces.

作者信息

Boys Alexander J, McCorry Mary Clare, Rodeo Scott, Bonassar Lawrence J, Estroff Lara A

机构信息

Department of Materials Science and Engineering, Cornell University, Ithaca, NY.

Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY.

出版信息

MRS Commun. 2017 Sep;7(3):289-308. doi: 10.1557/mrc.2017.91. Epub 2017 Oct 3.

Abstract

Soft tissue-to-bone interfaces are complex structures that consist of gradients of extracellular matrix materials, cell phenotypes, and biochemical signals. These interfaces, called entheses for ligaments, tendons, and the meniscus, are crucial to joint function, transferring mechanical loads and stabilizing orthopedic joints. When injuries occur to connected soft tissue, the enthesis must be re-established to restore function, but due to structural complexity, repair has proven challenging. Tissue engineering offers a promising solution for regenerating these tissues. This prospective review discusses methodologies for tissue engineering the enthesis, outlined in three key design inputs: materials processing methods, cellular contributions, and biochemical factors.

摘要

软组织与骨的界面是复杂的结构,由细胞外基质材料、细胞表型和生化信号的梯度组成。这些界面,即韧带、肌腱和半月板的附着点,对关节功能至关重要,可传递机械负荷并稳定骨科关节。当相连的软组织发生损伤时,必须重建附着点以恢复功能,但由于结构复杂,修复已被证明具有挑战性。组织工程为这些组织的再生提供了一个有前景的解决方案。这篇前瞻性综述讨论了用于组织工程化附着点的方法,概述了三个关键设计要素:材料加工方法、细胞作用和生化因素。

相似文献

1
Next Generation Tissue Engineering of Orthopedic Soft Tissue-to-Bone Interfaces.
MRS Commun. 2017 Sep;7(3):289-308. doi: 10.1557/mrc.2017.91. Epub 2017 Oct 3.
2
Driving native-like zonal enthesis formation in engineered ligaments using mechanical boundary conditions and β-tricalcium phosphate.
Acta Biomater. 2022 Mar 1;140:700-716. doi: 10.1016/j.actbio.2021.12.020. Epub 2021 Dec 24.
3
Bioinspired Scaffold Designs for Regenerating Musculoskeletal Tissue Interfaces.
Regen Eng Transl Med. 2020 Dec;6(4):451-483. doi: 10.1007/s40883-019-00132-3. Epub 2019 Dec 17.
5
Biomechanical pathways of dentoalveolar fibrous joints in health and disease.
Periodontol 2000. 2020 Feb;82(1):238-256. doi: 10.1111/prd.12306.
6
Tissue Engineering for the Insertions of Tendons and Ligaments: An Overview of Electrospun Biomaterials and Structures.
Front Bioeng Biotechnol. 2021 Mar 2;9:645544. doi: 10.3389/fbioe.2021.645544. eCollection 2021.
8
Strategies to engineer tendon/ligament-to-bone interface: Biomaterials, cells and growth factors.
Adv Drug Deliv Rev. 2015 Nov 1;94:126-40. doi: 10.1016/j.addr.2015.03.004. Epub 2015 Mar 14.
9
Engineering orthopedic tissue interfaces.
Tissue Eng Part B Rev. 2009 Jun;15(2):127-41. doi: 10.1089/ten.teb.2008.0371.
10
Tissue engineering strategies for the regeneration of orthopedic interfaces.
Ann Biomed Eng. 2010 Jun;38(6):2142-54. doi: 10.1007/s10439-010-0046-y. Epub 2010 Apr 27.

引用本文的文献

1
Gradient scaffolds in bone-soft tissue interface engineering: Structural characteristics, fabrication techniques, and emerging trends.
J Orthop Translat. 2025 Jan 28;50:333-353. doi: 10.1016/j.jot.2024.10.015. eCollection 2025 Jan.
2
Integrating Modern Technologies into Traditional Anterior Cruciate Ligament Tissue Engineering.
Bioengineering (Basel). 2025 Jan 7;12(1):39. doi: 10.3390/bioengineering12010039.
3
ACL microtrauma: healing through nutrition, modified sports training, and increased recovery time.
J Exp Orthop. 2022 Dec 14;9(1):121. doi: 10.1186/s40634-022-00561-0.
4
3D Bioelectronics with a Remodellable Matrix for Long-Term Tissue Integration and Recording.
Adv Mater. 2023 Feb;35(8):e2207847. doi: 10.1002/adma.202207847. Epub 2022 Dec 21.
5
Engineering Heart Valve Interfaces Using Melt Electrowriting: Biomimetic Design Strategies from Multi-Modal Imaging.
Adv Healthc Mater. 2022 Dec;11(24):e2201028. doi: 10.1002/adhm.202201028. Epub 2022 Nov 30.
6
Biodegradable Polyphosphazenes for Regenerative Engineering.
J Mater Res. 2022 Apr;37(8):1417-1428. doi: 10.1557/s43578-022-00551-z. Epub 2022 Apr 18.
8
9
Biomimetic Approaches for the Design and Fabrication of Bone-to-Soft Tissue Interfaces.
ACS Biomater Sci Eng. 2023 Jul 10;9(7):3810-3831. doi: 10.1021/acsbiomaterials.1c00620. Epub 2021 Nov 16.
10
Joining soft tissues to bone: Insights from modeling and simulations.
Bone Rep. 2020 Dec 23;14:100742. doi: 10.1016/j.bonr.2020.100742. eCollection 2021 Jun.

本文引用的文献

1
Evolution of Bioinks and Additive Manufacturing Technologies for 3D Bioprinting.
ACS Biomater Sci Eng. 2016 Oct 10;2(10):1662-1678. doi: 10.1021/acsbiomaterials.6b00088. Epub 2016 Apr 7.
3
Fabrication and Characterization of Biphasic Silk Fibroin Scaffolds for Tendon/Ligament-to-Bone Tissue Engineering.
Tissue Eng Part A. 2017 Aug;23(15-16):859-872. doi: 10.1089/ten.TEA.2016.0460. Epub 2017 Apr 21.
4
The microstructure and micromechanics of the tendon-bone insertion.
Nat Mater. 2017 Jun;16(6):664-670. doi: 10.1038/nmat4863. Epub 2017 Feb 27.
5
Micromechanical anisotropy and heterogeneity of the meniscus extracellular matrix.
Acta Biomater. 2017 May;54:356-366. doi: 10.1016/j.actbio.2017.02.043. Epub 2017 Feb 27.
7
Customized biomaterials to augment chondrocyte gene therapy.
Acta Biomater. 2017 Apr 15;53:260-267. doi: 10.1016/j.actbio.2017.02.008. Epub 2017 Feb 7.
8
Efficient decellularization for tissue engineering of the tendon-bone interface with preservation of biomechanics.
PLoS One. 2017 Feb 7;12(2):e0171577. doi: 10.1371/journal.pone.0171577. eCollection 2017.
9
Tissue-Derived Extracellular Matrix Bioscaffolds: Emerging Applications in Cartilage and Meniscus Repair.
Tissue Eng Part B Rev. 2017 Aug;23(4):386-398. doi: 10.1089/ten.TEB.2016.0431. Epub 2017 Mar 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验