Seco Fernando, Jiménez Antonio R
Centre for Automation and Robotics (CAR), Spanish Council for Scientific Research (CSIC-UPM), Ctra. de Campo Real km 0,200, Arganda del Rey, Madrid 28500, Spain.
Sensors (Basel). 2018 Jan 18;18(1):266. doi: 10.3390/s18010266.
In GPS-denied indoor environments, localization and tracking of people can be achieved with a mobile device such as a smartphone by processing the received signal strength (RSS) of RF signals emitted from known location beacons (anchor nodes), combined with Pedestrian Dead Reckoning (PDR) estimates of the user motion. An enhacement of this localization technique is feasible if the users themselves carry additional RF emitters (mobile nodes), and the cooperative position estimates of a group of persons incorporate the RSS measurements exchanged between users. We propose a centralized cooperative particle filter (PF) formulation over the joint state of all users that permits to process RSS measurements from both anchor and mobile emitters, as well as PDR motion estimates and map information (if available) to increase the overall positioning accuracy, particularly in regions with low density of anchor nodes. Smartphones are used as a convenient mobile platform for sensor measurements acquisition, low-level processing, and data transmission to a central unit, where cooperative localization processing takes place. The cooperative method is experimentally demonstrated with four users moving in an area of 1600 m 2 , with 7 anchor nodes comprised of active RFID (radio frequency identification) tags, and additional mobile tags carried by each user. Due to the limited coverage provided by the anchor beacons, RSS-based individual localization is inaccurate (6.1 m median error), but this improves to 4.9 m median error with the cooperative PF. Further gains are produced if the PDR information is added to the filter: median error of 3.1 m (individual) and 2.6 m (cooperative); and if map information is also considered, the results are 1.8 m (individual) and 1.6 m (cooperative). Thus, for each version of the particle filter, cooperative localization outperforms individual localization in terms of positioning accuracy.
在没有全球定位系统(GPS)的室内环境中,可以通过处理从已知位置信标(锚节点)发射的射频(RF)信号的接收信号强度(RSS),并结合用户运动的行人航位推算(PDR)估计,使用智能手机等移动设备来实现人员的定位和跟踪。如果用户自己携带额外的射频发射器(移动节点),并且一组人员的协作位置估计纳入用户之间交换的RSS测量值,那么这种定位技术的增强是可行的。我们提出了一种针对所有用户联合状态的集中式协作粒子滤波器(PF)公式,该公式允许处理来自锚发射器和移动发射器的RSS测量值,以及PDR运动估计和地图信息(如果可用),以提高整体定位精度,特别是在锚节点密度较低的区域。智能手机被用作一个方便的移动平台,用于采集传感器测量数据、进行低级处理以及将数据传输到进行协作定位处理的中央单元。通过四个用户在1600平方米的区域内移动进行了协作方法的实验演示,该区域有7个由有源射频识别(RFID)标签组成的锚节点,每个用户还携带额外的移动标签。由于锚信标提供的覆盖范围有限,基于RSS的个体定位不准确(中位数误差为6.1米),但使用协作粒子滤波器时,中位数误差可提高到4.9米。如果将PDR信息添加到滤波器中,会有进一步的改进:个体定位的中位数误差为3.1米,协作定位的中位数误差为2.6米;如果还考虑地图信息,结果分别为1.8米(个体)和1.6米(协作)。因此,对于粒子滤波器的每个版本,协作定位在定位精度方面都优于个体定位。