School of Computing, Informatics and Decision Systems Engineering, Arizona State University, Tempe, Arizona.
Banner Alzheimer's Institute, Phoenix, Arizona.
Transl Res. 2018 Apr;194:56-67. doi: 10.1016/j.trsl.2018.01.001. Epub 2018 Jan 10.
Alzheimer's disease (AD) is a major neurodegenerative disease and the most common cause of dementia. Currently, no treatment exists to slow down or stop the progression of AD. There is converging belief that disease-modifying treatments should focus on early stages of the disease, that is, the mild cognitive impairment (MCI) and preclinical stages. Making a diagnosis of AD and offering a prognosis (likelihood of converting to AD) at these early stages are challenging tasks but possible with the help of multimodality imaging, such as magnetic resonance imaging (MRI), fluorodeoxyglucose (FDG)-positron emission topography (PET), amyloid-PET, and recently introduced tau-PET, which provides different but complementary information. This article is a focused review of existing research in the recent decade that used statistical machine learning and artificial intelligence methods to perform quantitative analysis of multimodality image data for diagnosis and prognosis of AD at the MCI or preclinical stages. We review the existing work in 3 subareas: diagnosis, prognosis, and methods for handling modality-wise missing data-a commonly encountered problem when using multimodality imaging for prediction or classification. Factors contributing to missing data include lack of imaging equipment, cost, difficulty of obtaining patient consent, and patient drop-off (in longitudinal studies). Finally, we summarize our major findings and provide some recommendations for potential future research directions.
阿尔茨海默病(AD)是一种主要的神经退行性疾病,也是痴呆症最常见的病因。目前,尚无减缓或阻止 AD 进展的治疗方法。人们越来越相信,针对这种疾病的治疗方法应该侧重于疾病的早期阶段,也就是轻度认知障碍(MCI)和临床前阶段。在这些早期阶段对 AD 进行诊断并提供预后(转化为 AD 的可能性)是具有挑战性的任务,但借助磁共振成像(MRI)、氟脱氧葡萄糖(FDG)-正电子发射断层扫描(PET)、淀粉样蛋白-PET 等多种模态成像,以及最近引入的 tau-PET,这些任务是可以完成的,这些技术可以提供不同但互补的信息。本文是对过去十年中使用统计机器学习和人工智能方法对 MCI 或临床前阶段 AD 的多模态图像数据进行定量分析的现有研究进行的重点回顾。我们回顾了以下 3 个领域的现有工作:诊断、预后,以及处理模态缺失数据的方法——在使用多模态成像进行预测或分类时,这是一个常见的问题。导致数据缺失的因素包括缺乏成像设备、成本、获取患者同意的难度以及患者流失(在纵向研究中)。最后,我们总结了我们的主要发现,并为潜在的未来研究方向提供了一些建议。