Suppr超能文献

多模态影像与人工智能在阿尔茨海默病早期诊断与预后中的应用。

Use of multimodality imaging and artificial intelligence for diagnosis and prognosis of early stages of Alzheimer's disease.

机构信息

School of Computing, Informatics and Decision Systems Engineering, Arizona State University, Tempe, Arizona.

Banner Alzheimer's Institute, Phoenix, Arizona.

出版信息

Transl Res. 2018 Apr;194:56-67. doi: 10.1016/j.trsl.2018.01.001. Epub 2018 Jan 10.

Abstract

Alzheimer's disease (AD) is a major neurodegenerative disease and the most common cause of dementia. Currently, no treatment exists to slow down or stop the progression of AD. There is converging belief that disease-modifying treatments should focus on early stages of the disease, that is, the mild cognitive impairment (MCI) and preclinical stages. Making a diagnosis of AD and offering a prognosis (likelihood of converting to AD) at these early stages are challenging tasks but possible with the help of multimodality imaging, such as magnetic resonance imaging (MRI), fluorodeoxyglucose (FDG)-positron emission topography (PET), amyloid-PET, and recently introduced tau-PET, which provides different but complementary information. This article is a focused review of existing research in the recent decade that used statistical machine learning and artificial intelligence methods to perform quantitative analysis of multimodality image data for diagnosis and prognosis of AD at the MCI or preclinical stages. We review the existing work in 3 subareas: diagnosis, prognosis, and methods for handling modality-wise missing data-a commonly encountered problem when using multimodality imaging for prediction or classification. Factors contributing to missing data include lack of imaging equipment, cost, difficulty of obtaining patient consent, and patient drop-off (in longitudinal studies). Finally, we summarize our major findings and provide some recommendations for potential future research directions.

摘要

阿尔茨海默病(AD)是一种主要的神经退行性疾病,也是痴呆症最常见的病因。目前,尚无减缓或阻止 AD 进展的治疗方法。人们越来越相信,针对这种疾病的治疗方法应该侧重于疾病的早期阶段,也就是轻度认知障碍(MCI)和临床前阶段。在这些早期阶段对 AD 进行诊断并提供预后(转化为 AD 的可能性)是具有挑战性的任务,但借助磁共振成像(MRI)、氟脱氧葡萄糖(FDG)-正电子发射断层扫描(PET)、淀粉样蛋白-PET 等多种模态成像,以及最近引入的 tau-PET,这些任务是可以完成的,这些技术可以提供不同但互补的信息。本文是对过去十年中使用统计机器学习和人工智能方法对 MCI 或临床前阶段 AD 的多模态图像数据进行定量分析的现有研究进行的重点回顾。我们回顾了以下 3 个领域的现有工作:诊断、预后,以及处理模态缺失数据的方法——在使用多模态成像进行预测或分类时,这是一个常见的问题。导致数据缺失的因素包括缺乏成像设备、成本、获取患者同意的难度以及患者流失(在纵向研究中)。最后,我们总结了我们的主要发现,并为潜在的未来研究方向提供了一些建议。

相似文献

1
2
Manifold regularized multitask feature learning for multimodality disease classification.
Hum Brain Mapp. 2015 Feb;36(2):489-507. doi: 10.1002/hbm.22642. Epub 2014 Oct 3.
3
Multi-Modality Sparse Representation for Alzheimer's Disease Classification.
J Alzheimers Dis. 2018;65(3):807-817. doi: 10.3233/JAD-170338.
4
Feasibility and acceptance of simultaneous amyloid PET/MRI.
Eur J Nucl Med Mol Imaging. 2016 Nov;43(12):2236-2243. doi: 10.1007/s00259-016-3462-x. Epub 2016 Jul 19.
5
Effects of imaging modalities, brain atlases and feature selection on prediction of Alzheimer's disease.
J Neurosci Methods. 2015 Dec 30;256:168-83. doi: 10.1016/j.jneumeth.2015.08.020. Epub 2015 Aug 28.

引用本文的文献

1
A Cross-Modal Mutual Knowledge Distillation Framework for Alzheimer's Disease Diagnosis: Addressing Incomplete Modalities.
IEEE Trans Autom Sci Eng. 2025;22:14218-14233. doi: 10.1109/tase.2025.3556290. Epub 2025 Mar 31.
3
Role of artificial intelligence in revolutionizing drug discovery.
Fundam Res. 2024 May 9;5(3):1273-1287. doi: 10.1016/j.fmre.2024.04.021. eCollection 2025 May.
4
AD-Diff: enhancing Alzheimer's disease prediction accuracy through multimodal fusion.
Front Comput Neurosci. 2025 Mar 12;19:1484540. doi: 10.3389/fncom.2025.1484540. eCollection 2025.
5
Application of artificial intelligence in Alzheimer's disease: a bibliometric analysis.
Front Neurosci. 2025 Feb 14;19:1511350. doi: 10.3389/fnins.2025.1511350. eCollection 2025.
6
Unraveling the Mysteries of Alzheimer's Disease Using Artificial Intelligence.
Rev Recent Clin Trials. 2025;20(2):124-141. doi: 10.2174/0115748871330861241030143321.
7
Cutting-edge Strategies for Overcoming Therapeutic Barriers in Alzheimer's Disease.
Curr Pharm Des. 2025;31(8):598-618. doi: 10.2174/0113816128344571241018154506.
8
Radiomics insight into the neurodegenerative " brain: A narrative review from the nuclear medicine perspective.
Front Nucl Med. 2023 Feb 27;3:1143256. doi: 10.3389/fnume.2023.1143256. eCollection 2023.
9
Frontiers and hotspots evolution in mild cognitive impairment: a bibliometric analysis of from 2013 to 2023.
Front Neurosci. 2024 Aug 16;18:1352129. doi: 10.3389/fnins.2024.1352129. eCollection 2024.
10
Artificial Intelligence in Metabolomics: A Current Review.
Trends Analyt Chem. 2024 Sep;178. doi: 10.1016/j.trac.2024.117852. Epub 2024 Jul 3.

本文引用的文献

1
View-aligned hypergraph learning for Alzheimer's disease diagnosis with incomplete multi-modality data.
Med Image Anal. 2017 Feb;36:123-134. doi: 10.1016/j.media.2016.11.002. Epub 2016 Nov 16.
2
2016 Alzheimer's disease facts and figures.
Alzheimers Dement. 2016 Apr;12(4):459-509. doi: 10.1016/j.jalz.2016.03.001.
3
Multimodal Classification of Mild Cognitive Impairment Based on Partial Least Squares.
J Alzheimers Dis. 2016 Aug 10;54(1):359-71. doi: 10.3233/JAD-160102.
4
Multimodal prediction of conversion to Alzheimer's disease based on incomplete biomarkers.
Alzheimers Dement (Amst). 2015 Apr 30;1(2):206-15. doi: 10.1016/j.dadm.2015.01.006. eCollection 2015 Jun.
5
Tau and Aβ imaging, CSF measures, and cognition in Alzheimer's disease.
Sci Transl Med. 2016 May 11;8(338):338ra66. doi: 10.1126/scitranslmed.aaf2362.
6
Domain Transfer Learning for MCI Conversion Prediction.
IEEE Trans Biomed Eng. 2015 Jul;62(7):1805-1817. doi: 10.1109/TBME.2015.2404809. Epub 2015 Mar 2.
7
Deep learning based imaging data completion for improved brain disease diagnosis.
Med Image Comput Comput Assist Interv. 2014;17(Pt 3):305-12. doi: 10.1007/978-3-319-10443-0_39.
8
Beta-amyloid associated differential effects of APOE ε4 on brain metabolism in cognitively normal elderly.
Am J Geriatr Psychiatry. 2014 Oct;22(10):961-70. doi: 10.1016/j.jagp.2013.12.173. Epub 2014 Jan 4.
9
Neurodegenerative disease diagnosis using incomplete multi-modality data via matrix shrinkage and completion.
Neuroimage. 2014 May 1;91:386-400. doi: 10.1016/j.neuroimage.2014.01.033. Epub 2014 Jan 27.
10
Accurate multimodal probabilistic prediction of conversion to Alzheimer's disease in patients with mild cognitive impairment.
Neuroimage Clin. 2013 May 19;2:735-45. doi: 10.1016/j.nicl.2013.05.004. eCollection 2013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验