Boehm Anne V, Meininger Susanne, Tesch Annemarie, Gbureck Uwe, Müller Frank A
Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena, Germany.
Department for Functional Materials in Medicine and Dentistry (FMZ), University of Würzburg, Pleicherwall 2, 97070 Würzburg, Germany.
Materials (Basel). 2018 Jan 26;11(2):192. doi: 10.3390/ma11020192.
Calcium phosphate cement (CPC) is a well-established bone replacement material in dentistry and orthopedics. CPC mimics the physicochemical properties of natural bone and therefore shows excellent in vivo behavior. However, due to their brittleness, the application of CPC implants is limited to non-load bearing areas. Generally, the fiber-reinforcement of ceramic materials enhances fracture resistance, but simultaneously reduces the strength of the composite. Combining strong C-fiber reinforcement with a hydroxyapatite to form a CPC with a chemical modification of the fiber surface allowed us to adjust the fiber-matrix interface and consequently the fracture behavior. Thus, we could demonstrate enhanced mechanical properties of CPC in terms of bending strength and work of fracture to a strain of 5% (WOF5). Hereby, the strength increased by a factor of four from 9.2 ± 1.7 to 38.4 ± 1.7 MPa. Simultaneously, the WOF5 increased from 0.02 ± 0.004 to 2.0 ± 0.6 kJ∙m, when utilizing an /CaCl₂ pretreatment. The cell proliferation and activity of MG63 osteoblast-like cells as biocompatibility markers were not affected by fiber addition nor by fiber treatment. CPC reinforced with chemically activated C-fibers is a promising bone replacement material for load-bearing applications.
磷酸钙骨水泥(CPC)是牙科和骨科领域中一种成熟的骨替代材料。CPC模仿天然骨的物理化学性质,因此在体内表现出优异的性能。然而,由于其脆性,CPC植入物的应用仅限于非承重区域。一般来说,陶瓷材料的纤维增强可提高抗断裂性,但同时会降低复合材料的强度。将高强度C纤维增强材料与羟基磷灰石结合,形成一种对纤维表面进行化学改性的CPC,使我们能够调整纤维-基体界面,从而控制断裂行为。因此,我们能够证明,在弯曲强度和5%应变下的断裂功(WOF5)方面,CPC的力学性能得到了增强。由此,强度从9.2±1.7 MPa提高到38.4±1.7 MPa,增加了四倍。同时,在使用/CaCl₂预处理时,WOF5从0.02±0.004 kJ∙m增加到2.0±0.6 kJ∙m。作为生物相容性标志物的MG63成骨样细胞的细胞增殖和活性不受纤维添加或纤维处理的影响。用化学活化C纤维增强的CPC是一种有前途的用于承重应用的骨替代材料。