Suppr超能文献

使用多变量机器学习模型研究 Oncotype DX 复发评分与 DCE-MRI 特征的相关性。

A study of association of Oncotype DX recurrence score with DCE-MRI characteristics using multivariate machine learning models.

机构信息

Department of Radiology, Duke University School of Medicine, 2424 Erwin Road, Suite 302, Durham, NC, 27705, USA.

Department of Mathematics, Duke University, 120 Science Drive, 117 Physics Building, Durham, NC, 27708, USA.

出版信息

J Cancer Res Clin Oncol. 2018 May;144(5):799-807. doi: 10.1007/s00432-018-2595-7. Epub 2018 Feb 9.

Abstract

PURPOSE

To determine whether multivariate machine learning models of algorithmically assessed magnetic resonance imaging (MRI) features from breast cancer patients are associated with Oncotype DX (ODX) test recurrence scores.

METHODS

A set of 261 female patients with invasive breast cancer, pre-operative dynamic contrast enhanced magnetic resonance (DCE-MR) images and available ODX score at our institution was identified. A computer algorithm extracted a comprehensive set of 529 features from the DCE-MR images of these patients. The set of patients was divided into a training set and a test set. Using the training set we developed two machine learning-based models to discriminate (1) high ODX scores from intermediate and low ODX scores, and (2) high and intermediate ODX scores from low ODX scores. The performance of these models was evaluated on the independent test set.

RESULTS

High against low and intermediate ODX scores were predicted by the multivariate model with AUC 0.77 (95% CI 0.56-0.98, p < 0.003). Low against intermediate and high ODX score was predicted with AUC 0.51 (95% CI 0.41-0.61, p = 0.75).

CONCLUSION

A moderate association between imaging and ODX score was identified. The evaluated models currently do not warrant replacement of ODX with imaging alone.

摘要

目的

确定来自乳腺癌患者的算法评估磁共振成像(MRI)特征的多元机器学习模型是否与 Oncotype DX(ODX)测试复发评分相关。

方法

在本机构中确定了一组 261 名患有浸润性乳腺癌的女性患者,术前动态对比增强磁共振(DCE-MR)图像和可用的 ODX 评分。计算机算法从这些患者的 DCE-MR 图像中提取了一套全面的 529 个特征。将患者集分为训练集和测试集。使用训练集,我们开发了两种基于机器学习的模型来区分(1)高 ODX 评分与中低 ODX 评分,以及(2)高 ODX 评分与中低 ODX 评分。在独立的测试集中评估了这些模型的性能。

结果

使用 AUC 为 0.77(95%CI 0.56-0.98,p<0.003)的多元模型预测了高 ODX 评分与低 ODX 评分和中 ODX 评分之间的差异。使用 AUC 为 0.51(95%CI 0.41-0.61,p=0.75)预测了低 ODX 评分与中 ODX 评分和高 ODX 评分之间的差异。

结论

确定了影像学与 ODX 评分之间存在中度关联。评估的模型目前不支持仅用影像学替代 ODX。

相似文献

引用本文的文献

2
Adhesion strength of tumor cells predicts metastatic disease in vivo.肿瘤细胞的黏附强度可预测体内转移性疾病。
Cell Rep. 2025 Mar 25;44(3):115359. doi: 10.1016/j.celrep.2025.115359. Epub 2025 Mar 5.
3
AI-Enhanced PET and MR Imaging for Patients with Breast Cancer.人工智能增强的乳腺癌患者 PET 和 MR 成像
PET Clin. 2023 Oct;18(4):567-575. doi: 10.1016/j.cpet.2023.05.002. Epub 2023 Jun 17.

本文引用的文献

1
Effects of MRI scanner parameters on breast cancer radiomics.MRI扫描仪参数对乳腺癌影像组学的影响。
Expert Syst Appl. 2017 Nov 30;87:384-391. doi: 10.1016/j.eswa.2017.06.029. Epub 2017 Jun 20.
10
Radiomics: Images Are More than Pictures, They Are Data.放射组学:图像不止是图片,它们是数据。
Radiology. 2016 Feb;278(2):563-77. doi: 10.1148/radiol.2015151169. Epub 2015 Nov 18.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验