Department of Radiology, Duke University School of Medicine, 2424 Erwin Road, Suite 302, Durham, NC, 27705, USA.
Department of Mathematics, Duke University, 120 Science Drive, 117 Physics Building, Durham, NC, 27708, USA.
J Cancer Res Clin Oncol. 2018 May;144(5):799-807. doi: 10.1007/s00432-018-2595-7. Epub 2018 Feb 9.
To determine whether multivariate machine learning models of algorithmically assessed magnetic resonance imaging (MRI) features from breast cancer patients are associated with Oncotype DX (ODX) test recurrence scores.
A set of 261 female patients with invasive breast cancer, pre-operative dynamic contrast enhanced magnetic resonance (DCE-MR) images and available ODX score at our institution was identified. A computer algorithm extracted a comprehensive set of 529 features from the DCE-MR images of these patients. The set of patients was divided into a training set and a test set. Using the training set we developed two machine learning-based models to discriminate (1) high ODX scores from intermediate and low ODX scores, and (2) high and intermediate ODX scores from low ODX scores. The performance of these models was evaluated on the independent test set.
High against low and intermediate ODX scores were predicted by the multivariate model with AUC 0.77 (95% CI 0.56-0.98, p < 0.003). Low against intermediate and high ODX score was predicted with AUC 0.51 (95% CI 0.41-0.61, p = 0.75).
A moderate association between imaging and ODX score was identified. The evaluated models currently do not warrant replacement of ODX with imaging alone.
确定来自乳腺癌患者的算法评估磁共振成像(MRI)特征的多元机器学习模型是否与 Oncotype DX(ODX)测试复发评分相关。
在本机构中确定了一组 261 名患有浸润性乳腺癌的女性患者,术前动态对比增强磁共振(DCE-MR)图像和可用的 ODX 评分。计算机算法从这些患者的 DCE-MR 图像中提取了一套全面的 529 个特征。将患者集分为训练集和测试集。使用训练集,我们开发了两种基于机器学习的模型来区分(1)高 ODX 评分与中低 ODX 评分,以及(2)高 ODX 评分与中低 ODX 评分。在独立的测试集中评估了这些模型的性能。
使用 AUC 为 0.77(95%CI 0.56-0.98,p<0.003)的多元模型预测了高 ODX 评分与低 ODX 评分和中 ODX 评分之间的差异。使用 AUC 为 0.51(95%CI 0.41-0.61,p=0.75)预测了低 ODX 评分与中 ODX 评分和高 ODX 评分之间的差异。
确定了影像学与 ODX 评分之间存在中度关联。评估的模型目前不支持仅用影像学替代 ODX。