Nie Yuhao, Bi Xiaotao
1Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3 Canada.
2Clean Energy Research Center, University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3 Canada.
Biotechnol Biofuels. 2018 Feb 3;11:23. doi: 10.1186/s13068-018-1019-x. eCollection 2018.
Biofuels from hydrothermal liquefaction (HTL) of abundantly available forest residues in British Columbia (BC) can potentially make great contributions to reduce the greenhouse gas (GHG) emissions from the transportation sector. A life-cycle assessment was conducted to quantify the GHG emissions of a hypothetic 100 million liters per year HTL biofuel system in the Coast Region of BC. Three scenarios were defined and investigated, namely, supply of bulky forest residues for conversion in a central integrated refinery (Fr-CIR), HTL of forest residues to bio-oil in distributed biorefineries and subsequent upgrading in a central oil refinery (Bo-DBR), and densification of forest residues in distributed pellet plants and conversion in a central integrated refinery (Wp-CIR).
The life-cycle GHG emissions of HTL biofuels is 20.5, 17.0, and 19.5 g CO-eq/MJ for Fr-CIR, Bo-DBR, and Wp-CIR scenarios, respectively, corresponding to 78-82% reduction compared with petroleum fuels. The conversion stage dominates the total GHG emissions, making up more than 50%. The process emitting most GHGs over the life cycle of HTL biofuels is HTL buffer production. Transportation emission, accounting for 25% of Fr-CIR, can be lowered by 83% if forest residues are converted to bio-oil before transportation. When the credit from biochar applied for soil amendment is considered, a further reduction of 6.8 g CO-eq/MJ can be achieved.
Converting forest residues to bio-oil and wood pellets before transportation can significantly lower the transportation emission and contribute to a considerable reduction of the life-cycle GHG emissions. Process performance parameters (e.g., HTL energy requirement and biofuel yield) and the location specific parameter (e.g., electricity mix) have significant influence on the GHG emissions of HTL biofuels. Besides, the recycling of the HTL buffer needs to be investigated to further improve the environmental performance of HTL biofuels.
来自不列颠哥伦比亚省(BC)大量可得的森林残留物的水热液化(HTL)生物燃料,有可能为减少交通部门的温室气体(GHG)排放做出巨大贡献。开展了一项生命周期评估,以量化BC省海岸地区一个假设的每年1亿升HTL生物燃料系统的温室气体排放。定义并研究了三种情景,即:在中央综合炼油厂(Fr-CIR)中供应大量森林残留物用于转化;在分布式生物炼油厂中将森林残留物进行HTL转化为生物油,随后在中央炼油厂进行升级(Bo-DBR);在分布式颗粒厂中将森林残留物致密化,并在中央综合炼油厂进行转化(Wp-CIR)。
对于Fr-CIR、Bo-DBR和Wp-CIR情景,HTL生物燃料的生命周期温室气体排放分别为20.5、17.0和19.5克二氧化碳当量/兆焦,与石油燃料相比减少了78 - 82%。转化阶段在总温室气体排放中占主导地位,超过50%。在HTL生物燃料的生命周期中排放最多温室气体的过程是HTL缓冲液生产。运输排放占Fr-CIR的25%,如果森林残留物在运输前转化为生物油,运输排放可降低83%。当考虑用于土壤改良的生物炭的碳信用时,可进一步减少6.8克二氧化碳当量/兆焦。
在运输前将森林残留物转化为生物油和木颗粒可以显著降低运输排放,并有助于大幅减少生命周期温室气体排放。工艺性能参数(如HTL能量需求和生物燃料产量)以及特定地点参数(如电力组合)对HTL生物燃料的温室气体排放有重大影响。此外,需要研究HTL缓冲液的回收利用,以进一步提高HTL生物燃料的环境性能。