Suppr超能文献

基于松木残渣的快速热解生物燃料的动态生命周期碳分析:碳时间效应的影响

Dynamic life-cycle carbon analysis for fast pyrolysis biofuel produced from pine residues: implications of carbon temporal effects.

作者信息

Lan Kai, Ou Longwen, Park Sunkyu, Kelley Stephen S, Nepal Prakash, Kwon Hoyoung, Cai Hao, Yao Yuan

机构信息

Department of Forest Biomaterials, North Carolina State University, 2820 Faucette Drive, Raleigh, NC, 27606, USA.

Systems Assessment Center, Energy Systems Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL, 60439, USA.

出版信息

Biotechnol Biofuels. 2021 Sep 29;14(1):191. doi: 10.1186/s13068-021-02027-4.

Abstract

BACKGROUND

Woody biomass has been considered as a promising feedstock for biofuel production via thermochemical conversion technologies such as fast pyrolysis. Extensive Life Cycle Assessment studies have been completed to evaluate the carbon intensity of woody biomass-derived biofuels via fast pyrolysis. However, most studies assumed that woody biomass such as forest residues is a carbon-neutral feedstock like annual crops, despite a distinctive timeframe it takes to grow woody biomass. Besides, few studies have investigated the impacts of forest dynamics and the temporal effects of carbon on the overall carbon intensity of woody-derived biofuels. This study addressed such gaps by developing a life-cycle carbon analysis framework integrating dynamic modeling for forest and biorefinery systems with a time-based discounted Global Warming Potential (GWP) method developed in this work. The framework analyzed dynamic carbon and energy flows of a supply chain for biofuel production from pine residues via fast pyrolysis.

RESULTS

The mean carbon intensity of biofuel given by Monte Carlo simulation across three pine growth cases ranges from 40.8-41.2 g COe MJ (static method) to 51.0-65.2 g COe MJ (using the time-based discounted GWP method) when combusting biochar for energy recovery. If biochar is utilized as soil amendment, the carbon intensity reduces to 19.0-19.7 g COe MJ (static method) and 29.6-43.4 g COe MJ in the time-based method. Forest growth and yields (controlled by forest management strategies) show more significant impacts on biofuel carbon intensity when the temporal effect of carbon is taken into consideration. Variation in forest operations and management (e.g., energy consumption of thinning and harvesting), on the other hand, has little impact on the biofuel carbon intensity.

CONCLUSIONS

The carbon temporal effect, particularly the time lag of carbon sequestration during pine growth, has direct impacts on the carbon intensity of biofuels produced from pine residues from a stand-level pine growth and management point of view. The carbon implications are also significantly impacted by the assumptions of biochar end-of-life cases and forest management strategies.

摘要

背景

木质生物质被认为是通过快速热解等热化学转化技术生产生物燃料的一种有前景的原料。已经完成了大量的生命周期评估研究,以评估通过快速热解从木质生物质衍生的生物燃料的碳强度。然而,大多数研究假设森林残留物等木质生物质是一种像一年生作物一样的碳中性原料,尽管生长木质生物质需要独特的时间框架。此外,很少有研究调查森林动态和碳的时间效应对木质衍生生物燃料总体碳强度的影响。本研究通过开发一个生命周期碳分析框架来填补这些空白,该框架将森林和生物精炼系统的动态建模与本研究中开发的基于时间的贴现全球变暖潜势(GWP)方法相结合。该框架分析了通过快速热解从松树残留物生产生物燃料的供应链的动态碳和能量流。

结果

在三种松树生长情况下,通过蒙特卡洛模拟得出的生物燃料平均碳强度,在将生物炭用于能量回收时,范围从40.8 - 41.2克COe/兆焦(静态方法)到51.0 - 65.2克COe/兆焦(使用基于时间的贴现GWP方法)。如果将生物炭用作土壤改良剂,在静态方法中碳强度降至19.0 - 19.7克COe/兆焦,在基于时间的方法中为29.6 - 43.4克COe/兆焦。当考虑碳的时间效应时,森林生长和产量(由森林管理策略控制)对生物燃料碳强度的影响更为显著。另一方面,森林作业和管理的变化(例如间伐和采伐的能源消耗)对生物燃料碳强度影响很小。

结论

从林分水平的松树生长和管理角度来看,碳的时间效应,特别是松树生长期间碳固存的时间滞后,对由松树残留物生产的生物燃料的碳强度有直接影响。生物炭寿命结束情况和森林管理策略的假设也对碳影响有显著影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb22/8482607/557aad4722b7/13068_2021_2027_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验