Suppr超能文献

药物流行病学中的倾向评分:超越地平线。

Propensity Scores in Pharmacoepidemiology: Beyond the Horizon.

作者信息

Jackson John W, Schmid Ian, Stuart Elizabeth A

机构信息

Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205.

Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205.

出版信息

Curr Epidemiol Rep. 2017 Dec;4(4):271-280. doi: 10.1007/s40471-017-0131-y. Epub 2017 Nov 6.

Abstract

PURPOSE OF REVIEW

Propensity score methods have become commonplace in pharmacoepidemiology over the past decade. Their adoption has confronted formidable obstacles that arise from pharmacoepidemiology's reliance on large healthcare databases of considerable heterogeneity and complexity. These include identifying clinically meaningful samples, defining treatment comparisons, and measuring covariates in ways that respect sound epidemiologic study design. Additional complexities involve correctly modeling treatment decisions in the face of variation in healthcare practice, and dealing with missing information and unmeasured confounding. In this review, we examine the application of propensity score methods in pharmacoepidemiology with particular attention to these and other issues, with an eye towards standards of practice, recent methodological advances, and opportunities for future progress.

RECENT FINDINGS

Propensity score methods have matured in ways that can advance comparative effectiveness and safety research in pharmacoepidemiology. These include natural extensions for categorical treatments, matching algorithms that can optimize sample size given design constraints, weighting estimators that asymptotically target matched and overlap samples, and the incorporation of machine learning to aid in covariate selection and model building.

SUMMARY

These recent and encouraging advances should be further evaluated through simulation and empirical studies, but nonetheless represent a bright path ahead for the observational study of treatment benefits and harms.

摘要

综述目的

在过去十年中,倾向评分方法在药物流行病学中已变得很常见。其应用面临着巨大障碍,这些障碍源于药物流行病学对具有相当异质性和复杂性的大型医疗保健数据库的依赖。这些障碍包括识别具有临床意义的样本、定义治疗对照,以及以符合合理流行病学研究设计的方式测量协变量。其他复杂性涉及在面对医疗实践差异时正确建模治疗决策,以及处理缺失信息和未测量的混杂因素。在本综述中,我们研究倾向评分方法在药物流行病学中的应用,特别关注这些及其他问题,着眼于实践标准、近期方法学进展以及未来进展的机会。

最新发现

倾向评分方法已经成熟,能够推动药物流行病学中的比较疗效和安全性研究。这些进展包括分类治疗的自然扩展、在给定设计约束下可优化样本量的匹配算法、渐近针对匹配和重叠样本的加权估计器,以及纳入机器学习以辅助协变量选择和模型构建。

总结

这些近期且令人鼓舞的进展应通过模拟和实证研究进一步评估,但尽管如此,它们为治疗益处和危害的观察性研究指明了一条光明的道路。

相似文献

1
Propensity Scores in Pharmacoepidemiology: Beyond the Horizon.药物流行病学中的倾向评分:超越地平线。
Curr Epidemiol Rep. 2017 Dec;4(4):271-280. doi: 10.1007/s40471-017-0131-y. Epub 2017 Nov 6.
5
The future of Cochrane Neonatal.考克兰新生儿协作网的未来。
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.

引用本文的文献

本文引用的文献

2
Treatment Prediction, Balance, and Propensity Score Adjustment.治疗预测、平衡与倾向评分调整
Epidemiology. 2017 Sep;28(5):e51-e53. doi: 10.1097/EDE.0000000000000657.
7
Dependent Happenings: A Recent Methodological Review.相关事件:近期方法学综述
Curr Epidemiol Rep. 2016 Dec;3(4):297-305. doi: 10.1007/s40471-016-0086-4. Epub 2016 Jul 28.
8
Bias Analysis for Uncontrolled Confounding in the Health Sciences.健康科学中未控制混杂的偏倚分析。
Annu Rev Public Health. 2017 Mar 20;38:23-38. doi: 10.1146/annurev-publhealth-032315-021644. Epub 2017 Jan 6.
10
Model averaged double robust estimation.模型平均双稳健估计
Biometrics. 2017 Jun;73(2):410-421. doi: 10.1111/biom.12622. Epub 2016 Nov 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验