Suppr超能文献

评估操作模型在定量功能选择性时的应用。

An evaluation of the operational model when applied to quantify functional selectivity.

机构信息

Otago Pharmacometrics Group, National School of Pharmacy, University of Otago, Dunedin, New Zealand.

Department of Pharmacology and Clinical Pharmacology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.

出版信息

Br J Pharmacol. 2018 May;175(10):1654-1668. doi: 10.1111/bph.14171. Epub 2018 Mar 30.

Abstract

BACKGROUND AND PURPOSE

Functional selectivity describes the ability of ligands to differentially regulate multiple signalling pathways when coupled to a single receptor, and the operational model is commonly used to analyse these data. Here, we assess the mathematical properties of the operational model and evaluate the outcomes of fixing parameters on model performance.

EXPERIMENTAL APPROACH

The operational model was evaluated using both a mathematical identifiability analysis and simulation.

KEY RESULTS

Mathematical analysis revealed that the parameters R and K were not independently identifiable which can be solved by considering their ratio, τ. The ratio parameter, τ, was often imprecisely estimated when only functional assay data were available and generally only the transduction coefficient R ( τKA) could be estimated precisely. The general operational model (that includes baseline and the Hill coefficient) required either the parameters E or K to be fixed. The normalization process largely cancelled out the mean error of the calculated Δlog (R) caused by fixing these parameters. From this analysis, it was determined that we can avoid the need for a full agonist ligand to be included in an experiment to determine Δlog (R).

CONCLUSION AND IMPLICATIONS

This analysis has provided a ready-to-use understanding of current methods for quantifying functional selectivity. It showed that current methods are generally tolerant to fixing parameters. A new method was proposed that removes the need for including a high efficacy ligand in any given experiment, which allows application to large-scale screening to identify compounds with desirable features of functional selectivity.

摘要

背景与目的

功能选择性描述了配体与单个受体结合时,区分调节多个信号通路的能力,而操作模型通常用于分析这些数据。在这里,我们评估了操作模型的数学性质,并评估了固定参数对模型性能的影响。

实验方法

使用数学可识别性分析和模拟对操作模型进行了评估。

主要结果

数学分析表明,参数 R 和 K 不能独立识别,可以通过考虑它们的比值 τ 来解决。当仅具有功能测定数据时,比值参数 τ 通常估计不准确,通常只能准确估计转导系数 R(τKA)。一般的操作模型(包括基线和希尔系数)需要固定参数 E 或 K。归一化过程在很大程度上消除了由于固定这些参数而导致的计算 Δlog(R)的平均误差。通过该分析,确定可以避免在实验中包含完全激动剂配体来确定 Δlog(R)。

结论和意义

该分析为定量功能选择性的当前方法提供了易于理解的理解。它表明当前的方法通常对固定参数具有容忍性。提出了一种新方法,该方法不需要在任何给定的实验中包含高功效配体,从而允许应用于大规模筛选以识别具有功能选择性所需特征的化合物。

相似文献

1
An evaluation of the operational model when applied to quantify functional selectivity.
Br J Pharmacol. 2018 May;175(10):1654-1668. doi: 10.1111/bph.14171. Epub 2018 Mar 30.
3
An intact model for quantifying functional selectivity.
Sci Rep. 2019 Feb 22;9(1):2557. doi: 10.1038/s41598-019-39000-z.
4
A method for the quantification of biased signalling at constitutively active receptors.
Br J Pharmacol. 2018 Jun;175(11):2046-2062. doi: 10.1111/bph.14190. Epub 2018 Apr 25.
5
Modelling and simulation of biased agonism dynamics at a G protein-coupled receptor.
J Theor Biol. 2018 Apr 7;442:44-65. doi: 10.1016/j.jtbi.2018.01.010. Epub 2018 Jan 12.
6
A Complementary Scale of Biased Agonism for Agonists with Differing Maximal Responses.
Sci Rep. 2017 Nov 13;7(1):15389. doi: 10.1038/s41598-017-15258-z.
7
Being mindful of seven-transmembrane receptor 'guests' when assessing agonist selectivity.
Br J Pharmacol. 2010 Jul;160(5):1045-7. doi: 10.1111/j.1476-5381.2010.00764.x.
9
Parametric sensitivity analysis for biochemical reaction networks based on pathwise information theory.
BMC Bioinformatics. 2013 Oct 22;14:311. doi: 10.1186/1471-2105-14-311.

引用本文的文献

2
Evaluating signaling bias for synthetic cannabinoid receptor agonists at the cannabinoid CB receptor.
Pharmacol Res Perspect. 2023 Dec;11(6):e01157. doi: 10.1002/prp2.1157.
3
A single unified model for fitting simple to complex receptor response data.
Sci Rep. 2020 Aug 7;10(1):13386. doi: 10.1038/s41598-020-70220-w.
4
Evaluation of the profiles of CB cannabinoid receptor signalling bias using joint kinetic modelling.
Br J Pharmacol. 2020 Aug;177(15):3449-3463. doi: 10.1111/bph.15066. Epub 2020 May 15.
5
100 years of modelling ligand-receptor binding and response: A focus on GPCRs.
Br J Pharmacol. 2020 Apr;177(7):1472-1484. doi: 10.1111/bph.14988. Epub 2020 Feb 28.
6
Do Toxic Synthetic Cannabinoid Receptor Agonists Have Signature in Vitro Activity Profiles? A Case Study of AMB-FUBINACA.
ACS Chem Neurosci. 2019 Oct 16;10(10):4350-4360. doi: 10.1021/acschemneuro.9b00429. Epub 2019 Sep 24.
8
An intact model for quantifying functional selectivity.
Sci Rep. 2019 Feb 22;9(1):2557. doi: 10.1038/s41598-019-39000-z.
9
Cannabinoid Receptor 2 Signalling Bias Elicited by 2,4,6-Trisubstituted 1,3,5-Triazines.
Front Pharmacol. 2018 Nov 20;9:1202. doi: 10.3389/fphar.2018.01202. eCollection 2018.

本文引用的文献

1
A three-parameter two-state model of receptor function that incorporates affinity, efficacy, and signal amplification.
Pharmacol Res Perspect. 2017 Apr 27;5(3):e00311. doi: 10.1002/prp2.311. eCollection 2017 Jun.
2
What do we mean by identifiability in mixed effects models?
J Pharmacokinet Pharmacodyn. 2016 Feb;43(1):111-22. doi: 10.1007/s10928-015-9459-4. Epub 2015 Dec 10.
3
What is biased efficacy? Defining the relationship between intrinsic efficacy and free energy coupling.
Trends Pharmacol Sci. 2014 Dec;35(12):639-47. doi: 10.1016/j.tips.2014.09.010. Epub 2014 Oct 30.
4
A kinetic model of GPCRs: analysis of G protein activity, occupancy, coupling and receptor-state affinity constants.
J Recept Signal Transduct Res. 2015;35(4):269-83. doi: 10.3109/10799893.2014.975250. Epub 2014 Oct 29.
5
A systems pharmacology perspective on the clinical development of Fatty Acid amide hydrolase inhibitors for pain.
CPT Pharmacometrics Syst Pharmacol. 2014 Jan 15;3(1):e91. doi: 10.1038/psp.2013.72.
6
Quantification of ligand bias for clinically relevant β2-adrenergic receptor ligands: implications for drug taxonomy.
Mol Pharmacol. 2014 Mar;85(3):492-509. doi: 10.1124/mol.113.088880. Epub 2013 Dec 23.
7
Use of functional assays to detect and quantify functional selectivity.
Drug Discov Today Technol. 2010 Spring;7(1):e1-e94. doi: 10.1016/j.ddtec.2010.07.001.
8
An approach for identifiability of population pharmacokinetic-pharmacodynamic models.
CPT Pharmacometrics Syst Pharmacol. 2013 Jun 19;2(6):e49. doi: 10.1038/psp.2013.25.
9
Predicting nonlinear changes in bone mineral density over time using a multiscale systems pharmacology model.
CPT Pharmacometrics Syst Pharmacol. 2012 Nov 14;1(11):e14. doi: 10.1038/psp.2012.15.
10
Quantifying biased agonism: understanding the links between affinity and efficacy.
Nat Rev Drug Discov. 2013 Jun;12(6):483. doi: 10.1038/nrd3954-c1. Epub 2013 May 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验