Suppr超能文献

基于磁共振成像的前列腺活检风险分层预测模型。

A Magnetic Resonance Imaging-Based Prediction Model for Prostate Biopsy Risk Stratification.

机构信息

Department of Urology and Pediatric Urology, University Medical Center, Mainz, Germany.

Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.

出版信息

JAMA Oncol. 2018 May 1;4(5):678-685. doi: 10.1001/jamaoncol.2017.5667.

Abstract

IMPORTANCE

Multiparametric magnetic resonance imaging (MRI) in conjunction with MRI-transrectal ultrasound (TRUS) fusion-guided biopsies have improved the detection of prostate cancer. It is unclear whether MRI itself adds additional value to multivariable prediction models based on clinical parameters.

OBJECTIVE

To determine whether an MRI-based prediction model can reduce unnecessary biopsies in patients with suspected prostate cancer.

DESIGN, SETTING, AND PARTICIPANTS: Patients underwent MRI, MRI-TRUS fusion-guided biopsy, and 12-core systematic biopsy in 1 session. The development cohort used to derive the prediction model consisted of 400 patients from 1 institution enrolled between May 14, 2015, and August 31, 2016, and the validation cohort included 251 patients from 2 independent institutions who underwent biopsies between April 1, 2013, and June 30, 2016, at 1 institution and between July 1, 2015, and October 31, 2016, at the other institution. The MRI model included MRI-derived parameters in addition to clinical variables. Area under the curve of receiver operating characteristic curves and decision curve analysis were performed.

MAIN OUTCOMES AND MEASURES

Risk of clinically significant prostate cancer on biopsy, defined as a Gleason score of 3 + 4 or higher in at least 1 biopsy core.

RESULTS

Overall, 193 (48.3%) of the 400 patients in the development cohort (mean [SD] age at biopsy, 64.3 [7.1] years) and 96 (38.2%) of the 251 patients in the validation cohort (mean [SD] age at biopsy, 64.9 [7.2] years) had clinically significant prostate cancer, defined as a Gleason score greater than or equal to 3 + 4. By applying the model to the external validation cohort, the area under the curve increased from 64% to 84% compared with the baseline model (P < .001). At a risk threshold of 20%, the MRI model had a lower false-positive rate than the baseline model (46% [95% CI, 32%-66%] vs 92% [95% CI, 70%-100%]), with only a small reduction in the true-positive rate (89% [95% CI, 85%-96%] vs 99% [95% CI, 89%-100%]). Eighteen of 100 fewer biopsies could have been performed, with no increase in the number of patients with missed clinically significant prostate cancers.

CONCLUSIONS AND RELEVANCE

The inclusion of MRI-derived parameters in a risk model could reduce the number of unnecessary biopsies while maintaining a high rate of diagnosis of clinically significant prostate cancers.

摘要

重要性

多参数磁共振成像(MRI)联合 MRI-经直肠超声(TRUS)融合引导活检提高了前列腺癌的检出率。目前尚不清楚 MRI 本身是否能为基于临床参数的多变量预测模型增加额外的价值。

目的

确定基于 MRI 的预测模型是否能减少疑似前列腺癌患者的不必要活检。

设计、地点和参与者:本研究纳入了 1 个机构的 400 例患者,这些患者在 1 次就诊时接受了 MRI、MRI-TRUS 融合引导活检和 12 针系统活检。用于推导预测模型的开发队列包括 2015 年 5 月 14 日至 2016 年 8 月 31 日期间入组的 400 例患者,验证队列包括来自 2 个独立机构的 251 例患者,他们分别于 2013 年 4 月 1 日至 6 月 30 日在 1 个机构、2015 年 7 月 1 日至 10 月 31 日在另 1 个机构接受了活检。MRI 模型纳入了 MRI 衍生参数和临床变量。绘制了接受者操作特征曲线的曲线下面积和决策曲线分析。

主要结局和测量指标

活检中临床显著前列腺癌的风险,定义为至少 1 个活检组织中 Gleason 评分为 3+4 或更高。

结果

总的来说,在开发队列的 400 例患者(活检时平均[SD]年龄为 64.3[7.1]岁)和验证队列的 251 例患者(活检时平均[SD]年龄为 64.9[7.2]岁)中,有 193 例(48.3%)和 96 例(38.2%)患者患有临床显著的前列腺癌,定义为 Gleason 评分大于或等于 3+4。将该模型应用于外部验证队列后,与基线模型相比,曲线下面积从 64%增加到 84%(P<0.001)。在风险阈值为 20%时,MRI 模型的假阳性率低于基线模型(46%[95%CI,32%-66%]比 92%[95%CI,70%-100%]),而真阳性率仅略有下降(89%[95%CI,85%-96%]比 99%[95%CI,89%-100%])。可减少 18/100 例不必要的活检,而不会增加漏诊临床显著前列腺癌的患者数量。

结论和相关性

在风险模型中纳入 MRI 衍生参数可以减少不必要的活检数量,同时保持高比例的临床显著前列腺癌的诊断率。

相似文献

引用本文的文献

本文引用的文献

5
Cancer Statistics, 2017.《2017 年癌症统计》
CA Cancer J Clin. 2017 Jan;67(1):7-30. doi: 10.3322/caac.21387. Epub 2017 Jan 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验