Suppr超能文献

利用非平衡候选蒙特卡罗和分子动力学模拟进行碎片构象预测。

Fragment Pose Prediction Using Non-equilibrium Candidate Monte Carlo and Molecular Dynamics Simulations.

机构信息

Department of Pharmaceutical Sciences, University of California-Irvine, Irvine, California 92697, United States.

OpenEye Scientific Software, Santa Fe, New Mexico 87508, United States.

出版信息

J Chem Theory Comput. 2020 Apr 14;16(4):2778-2794. doi: 10.1021/acs.jctc.9b01096. Epub 2020 Mar 27.

Abstract

Part of early stage drug discovery involves determining how molecules may bind to the target protein. Through understanding where and how molecules bind, chemists can begin to build ideas on how to design improvements to increase binding affinities. In this retrospective study, we compare how computational approaches like docking, molecular dynamics (MD) simulations, and a non-equilibrium candidate Monte Carlo (NCMC)-based method (NCMC + MD) perform in predicting binding modes for a set of 12 fragment-like molecules, which bind to soluble epoxide hydrolase. We evaluate each method's effectiveness in identifying the dominant binding mode and finding additional binding modes (if any). Then, we compare our predicted binding modes to experimentally obtained X-ray crystal structures. We dock each of the 12 small molecules into the apo-protein crystal structure and then run simulations up to 1 μs each. Small and fragment-like molecules likely have smaller energy barriers separating different binding modes by virtue of relatively fewer and weaker interactions relative to drug-like molecules and thus likely undergo more rapid binding mode transitions. We expect, thus, to see more rapid transitions between binding modes in our study. Following this, we build Markov State Models to define our stable ligand binding modes. We investigate if adequate sampling of ligand binding modes and transitions between them can occur at the microsecond timescale using traditional MD or a hybrid NCMC+MD simulation approach. Our findings suggest that even with small fragment-like molecules, we fail to sample all the crystallographic binding modes using microsecond MD simulations, but using NCMC+MD, we have better success in sampling the crystal structure while obtaining the correct populations.

摘要

药物发现的早期阶段包括确定分子如何与靶蛋白结合。通过了解分子结合的位置和方式,化学家可以开始构建如何设计改进以提高结合亲和力的想法。在这项回顾性研究中,我们比较了对接、分子动力学(MD)模拟和基于非平衡候选蒙特卡罗(NCMC)的方法(NCMC+MD)等计算方法在预测一组 12 个片段样分子与可溶性环氧水解酶结合模式方面的表现。我们评估了每种方法识别主导结合模式和发现其他结合模式(如果有)的有效性。然后,我们将我们预测的结合模式与实验获得的 X 射线晶体结构进行比较。我们将这 12 个小分子中的每一个对接入apo 蛋白晶体结构中,然后每个模拟运行长达 1 μs。由于与药物样分子相比,小分子和片段样分子具有相对较少且较弱的相互作用,因此不同结合模式之间的能量障碍可能较小,因此可能经历更快的结合模式转变。因此,我们预计在我们的研究中会看到更多的结合模式之间的快速转变。在此之后,我们构建马尔可夫状态模型来定义我们稳定的配体结合模式。我们研究在微秒时间尺度上是否可以使用传统 MD 或混合 NCMC+MD 模拟方法充分采样配体结合模式及其之间的转变。我们的发现表明,即使使用小分子和片段样分子,我们也无法使用微秒 MD 模拟充分采样所有晶体学结合模式,但使用 NCMC+MD,我们在获得正确的配体结合模式的同时更好地采样了晶体结构。

相似文献

9
Enhancing Side Chain Rotamer Sampling Using Nonequilibrium Candidate Monte Carlo.利用非平衡候选蒙特卡罗方法增强侧链构象抽样。
J Chem Theory Comput. 2019 Mar 12;15(3):1848-1862. doi: 10.1021/acs.jctc.8b01018. Epub 2019 Feb 11.

引用本文的文献

3
An overview of the SAMPL8 host-guest binding challenge.SAMPL8 亲合作用结合挑战概述。
J Comput Aided Mol Des. 2022 Oct;36(10):707-734. doi: 10.1007/s10822-022-00462-5. Epub 2022 Oct 14.
7
Reversibly Sampling Conformations and Binding Modes Using Molecular Darting.使用分子镖射技术来可逆地采样构象和结合模式。
J Chem Theory Comput. 2021 Jan 12;17(1):302-314. doi: 10.1021/acs.jctc.0c00752. Epub 2020 Dec 8.

本文引用的文献

1
Biomolecular Solvation Structure Revealed by Molecular Dynamics Simulations.分子动力学模拟揭示生物分子溶剂化结构。
J Am Chem Soc. 2019 Mar 20;141(11):4711-4720. doi: 10.1021/jacs.8b13613. Epub 2019 Mar 11.
3
Molecular Dynamics Simulation for All.分子动力学模拟概览。
Neuron. 2018 Sep 19;99(6):1129-1143. doi: 10.1016/j.neuron.2018.08.011.
8
Improvements to the APBS biomolecular solvation software suite.APBS生物分子溶剂化软件套件的改进。
Protein Sci. 2018 Jan;27(1):112-128. doi: 10.1002/pro.3280. Epub 2017 Oct 24.
9
Software for molecular docking: a review.分子对接软件综述
Biophys Rev. 2017 Apr;9(2):91-102. doi: 10.1007/s12551-016-0247-1. Epub 2017 Jan 16.
10
Receptor-ligand molecular docking.受体-配体分子对接
Biophys Rev. 2014 Mar;6(1):75-87. doi: 10.1007/s12551-013-0130-2. Epub 2013 Dec 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验