Asano Takashi, Ochi Yoshiaki, Takahashi Yasushi, Kishimoto Katsuhiro, Noda Susumu
Opt Express. 2017 Feb 6;25(3):1769-1777. doi: 10.1364/OE.25.001769.
Photonic crystal nanocavities that simultaneously possess small modal volumes and high quality (Q) factors have opened up novel research areas in photonics during this decade. Here, we present an important key for the increase of Q factors to ranges beyond ten million. A systematic investigation on photon lifetimes of air-bridge-type heterostructure nanocavities fabricated from silicon on insulator (SOI) substrates indicated the importance of cleaning the bottom side (buried oxide side) of the nanaocavites. Repeated thermal oxidation and an oxide removal process applied after the removal of the buried oxide layer underneath the nanocavities realized an experimental Q factor greater than eleven million, which is the highest experimental Q ever recorded. The results provide important information not only for Si PC nanocavities but also for general Si nanophotonic devices and photonic electronic convergence systems.
在这十年间,同时具备小模式体积和高品质(Q)因子的光子晶体纳米腔在光子学领域开辟了新的研究方向。在此,我们展示了将Q因子提高到超过一千万的范围的一个重要关键。对由绝缘体上硅(SOI)衬底制成的气桥型异质结构纳米腔的光子寿命进行的系统研究表明,清洁纳米腔的底面(掩埋氧化物面)非常重要。在去除纳米腔下方的掩埋氧化物层之后进行重复的热氧化和氧化物去除工艺,实现了大于一千一百万的实验Q因子,这是有记录以来最高的实验Q值。这些结果不仅为硅光子晶体纳米腔提供了重要信息,也为一般的硅纳米光子器件和光子电子融合系统提供了重要信息。