Ding Sophie W, Haas Michael, Guo Xinghan, Kuruma Kazuhiro, Jin Chang, Li Zixi, Awschalom David D, Delegan Nazar, Heremans F Joseph, High Alexander A, Loncar Marko
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA.
Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA.
Nat Commun. 2024 Jul 28;15(1):6358. doi: 10.1038/s41467-024-50667-5.
Quantum information technology offers the potential to realize unprecedented computational resources via secure channels distributing entanglement between quantum computers. Diamond, as a host to optically-accessible spin qubits, is a leading platform to realize quantum memory nodes needed to extend such quantum links. Photonic crystal (PhC) cavities enhance light-matter interaction and are essential for an efficient interface between spins and photons that are used to store and communicate quantum information respectively. Here, we demonstrate one- and two-dimensional PhC cavities fabricated in thin-film diamonds, featuring quality factors (Q) of 1.8 × 10 and 1.6 × 10, respectively, the highest Qs for visible PhC cavities realized in any material. Importantly, our fabrication process is simple and high-yield, based on conventional planar fabrication techniques, in contrast to the previous with complex undercut processes. We also demonstrate fiber-coupled 1D PhC cavities with high photon extraction efficiency, and optical coupling between a single SiV center and such a cavity at 4 K achieving a Purcell factor of 18. The demonstrated photonic platform may fundamentally improve the performance and scalability of quantum nodes and expedite the development of related technologies.
量子信息技术提供了通过在量子计算机之间分配纠缠的安全通道来实现前所未有的计算资源的潜力。作为光可访问自旋量子比特的宿主,金刚石是实现扩展此类量子链路所需的量子存储节点的领先平台。光子晶体(PhC)腔增强了光与物质的相互作用,并且对于分别用于存储和通信量子信息的自旋与光子之间的高效接口至关重要。在这里,我们展示了在薄膜金刚石中制造的一维和二维PhC腔,其品质因数(Q)分别为1.8×10和1.6×10,是在任何材料中实现的可见PhC腔的最高Q值。重要的是,与之前复杂的底切工艺不同,我们的制造工艺基于传统的平面制造技术,简单且产量高。我们还展示了具有高光子提取效率的光纤耦合一维PhC腔,以及在4K下单个SiV中心与这样一个腔之间的光学耦合,实现了18的珀塞尔因子。所展示的光子平台可能从根本上提高量子节点的性能和可扩展性,并加速相关技术的发展。