Suppr超能文献

使用计算自适应光学的波前测量

Wavefront measurement using computational adaptive optics.

作者信息

South Fredrick A, Liu Yuan-Zhi, Bower Andrew J, Xu Yang, Carney P Scott, Boppart Stephen A

出版信息

J Opt Soc Am A Opt Image Sci Vis. 2018 Mar 1;35(3):466-473. doi: 10.1364/JOSAA.35.000466.

Abstract

In many optical imaging applications, it is necessary to correct for aberrations to obtain high quality images. Optical coherence tomography (OCT) provides access to the amplitude and phase of the backscattered optical field for three-dimensional (3D) imaging samples. Computational adaptive optics (CAO) modifies the phase of the OCT data in the spatial frequency domain to correct optical aberrations without using a deformable mirror, as is commonly done in hardware-based adaptive optics (AO). This provides improvement of image quality throughout the 3D volume, enabling imaging across greater depth ranges and in highly aberrated samples. However, the CAO aberration correction has a complicated relation to the imaging pupil and is not a direct measurement of the pupil aberrations. Here we present new methods for recovering the wavefront aberrations directly from the OCT data without the use of hardware adaptive optics. This enables both computational measurement and correction of optical aberrations.

摘要

在许多光学成像应用中,有必要校正像差以获得高质量图像。光学相干断层扫描(OCT)可获取用于三维(3D)成像样本的背向散射光场的幅度和相位。计算自适应光学(CAO)在空间频域中修改OCT数据的相位,以校正光学像差,而无需像基于硬件的自适应光学(AO)那样使用可变形镜。这在整个3D体积中提高了图像质量,使得能够在更大的深度范围内对高度像差的样本进行成像。然而,CAO像差校正与成像光瞳具有复杂的关系,并非对光瞳像差的直接测量。在此,我们提出了无需使用硬件自适应光学就可直接从OCT数据中恢复波前像差的新方法。这实现了光学像差的计算测量和校正。

相似文献

1
Wavefront measurement using computational adaptive optics.
J Opt Soc Am A Opt Image Sci Vis. 2018 Mar 1;35(3):466-473. doi: 10.1364/JOSAA.35.000466.
2
Combined hardware and computational optical wavefront correction.
Biomed Opt Express. 2018 May 8;9(6):2562-2574. doi: 10.1364/BOE.9.002562. eCollection 2018 Jun 1.
4
Computational adaptive optics for broadband optical interferometric tomography of biological tissue.
Proc Natl Acad Sci U S A. 2012 May 8;109(19):7175-80. doi: 10.1073/pnas.1121193109. Epub 2012 Apr 26.
5
Computational adaptive optics for polarization-sensitive optical coherence tomography.
Opt Lett. 2021 May 1;46(9):2071-2074. doi: 10.1364/OL.418637.
7
Local wavefront mapping in tissue using computational adaptive optics OCT.
Opt Lett. 2019 Mar 1;44(5):1186-1189. doi: 10.1364/OL.44.001186.
8
In vivo imaging of human photoreceptor mosaic with wavefront sensorless adaptive optics optical coherence tomography.
Biomed Opt Express. 2015 Jan 16;6(2):580-90. doi: 10.1364/BOE.6.000580. eCollection 2015 Feb 1.
9

引用本文的文献

1
Wide Dynamic Range Digital Aberration Measurement and Fast Anterior-Segment OCT Imaging .
Sensors (Basel). 2024 Aug 10;24(16):5161. doi: 10.3390/s24165161.
2
Adaptive optics for optical microscopy [Invited].
Biomed Opt Express. 2023 Mar 29;14(4):1732-1756. doi: 10.1364/BOE.479886. eCollection 2023 Apr 1.
4
Digital ocular swept source optical coherence aberrometry.
Biomed Opt Express. 2021 Oct 7;12(11):6762-6779. doi: 10.1364/BOE.430596. eCollection 2021 Nov 1.
5
Wavefront sensor-less adaptive optics using deep reinforcement learning.
Biomed Opt Express. 2021 Aug 6;12(9):5423-5438. doi: 10.1364/BOE.427970. eCollection 2021 Sep 1.
6
Closed-loop wavefront sensing and correction in the mouse brain with computed optical coherence microscopy.
Biomed Opt Express. 2021 Jul 16;12(8):4934-4954. doi: 10.1364/BOE.427979. eCollection 2021 Aug 1.
8
Analysis of Damage and Wound Healing in the Retinal Pigmented Epithelium.
Adv Exp Med Biol. 2019;1185:425-430. doi: 10.1007/978-3-030-27378-1_70.
9
Computed optical coherence microscopy of mouse brain ex vivo.
J Biomed Opt. 2019 Nov;24(11):1-18. doi: 10.1117/1.JBO.24.11.116002.

本文引用的文献

1
digital wavefront sensing using swept source OCT.
Biomed Opt Express. 2017 Jun 21;8(7):3369-3382. doi: 10.1364/BOE.8.003369. eCollection 2017 Jul 1.
2
Computational optical coherence tomography [Invited].
Biomed Opt Express. 2017 Feb 16;8(3):1549-1574. doi: 10.1364/BOE.8.001549. eCollection 2017 Mar 1.
3
Computed Optical Interferometric Imaging: Methods, Achievements, and Challenges.
IEEE J Sel Top Quantum Electron. 2016 May-Jun;22(3). doi: 10.1109/JSTQE.2015.2493962. Epub 2015 Nov 2.
4
Aberration-free volumetric high-speed imaging of in vivo retina.
Sci Rep. 2016 Oct 20;6:35209. doi: 10.1038/srep35209.
5
The Development, Commercialization, and Impact of Optical Coherence Tomography.
Invest Ophthalmol Vis Sci. 2016 Jul 1;57(9):OCT1-OCT13. doi: 10.1167/iovs.16-19963.
6
Computational high-resolution optical imaging of the living human retina.
Nat Photonics. 2015;9:440-443. doi: 10.1038/NPHOTON.2015.102.
7
Interferometric synthetic aperture microscopy.
Nat Phys. 2007 Feb 1;3(2):129-134. doi: 10.1038/nphys514.
8
Computed optical interferometric tomography for high-speed volumetric cellular imaging.
Biomed Opt Express. 2014 Aug 8;5(9):2988-3000. doi: 10.1364/BOE.5.002988. eCollection 2014 Sep 1.
9
Stability in computed optical interferometric tomography (part I): stability requirements.
Opt Express. 2014 Aug 11;22(16):19183-97. doi: 10.1364/OE.22.019183.
10
Real-time computed optical interferometric tomography.
Nat Photonics. 2013 Jun 1;7(6):444-448. doi: 10.1038/nphoton.2013.71.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验