South Fredrick A, Liu Yuan-Zhi, Bower Andrew J, Xu Yang, Carney P Scott, Boppart Stephen A
J Opt Soc Am A Opt Image Sci Vis. 2018 Mar 1;35(3):466-473. doi: 10.1364/JOSAA.35.000466.
In many optical imaging applications, it is necessary to correct for aberrations to obtain high quality images. Optical coherence tomography (OCT) provides access to the amplitude and phase of the backscattered optical field for three-dimensional (3D) imaging samples. Computational adaptive optics (CAO) modifies the phase of the OCT data in the spatial frequency domain to correct optical aberrations without using a deformable mirror, as is commonly done in hardware-based adaptive optics (AO). This provides improvement of image quality throughout the 3D volume, enabling imaging across greater depth ranges and in highly aberrated samples. However, the CAO aberration correction has a complicated relation to the imaging pupil and is not a direct measurement of the pupil aberrations. Here we present new methods for recovering the wavefront aberrations directly from the OCT data without the use of hardware adaptive optics. This enables both computational measurement and correction of optical aberrations.
在许多光学成像应用中,有必要校正像差以获得高质量图像。光学相干断层扫描(OCT)可获取用于三维(3D)成像样本的背向散射光场的幅度和相位。计算自适应光学(CAO)在空间频域中修改OCT数据的相位,以校正光学像差,而无需像基于硬件的自适应光学(AO)那样使用可变形镜。这在整个3D体积中提高了图像质量,使得能够在更大的深度范围内对高度像差的样本进行成像。然而,CAO像差校正与成像光瞳具有复杂的关系,并非对光瞳像差的直接测量。在此,我们提出了无需使用硬件自适应光学就可直接从OCT数据中恢复波前像差的新方法。这实现了光学像差的计算测量和校正。