Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210009, China.
Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210009, China.
Sci Rep. 2018 Mar 16;8(1):4743. doi: 10.1038/s41598-018-22853-1.
Visceral pleural invasion (VPI) in stageI lung adenocarcinoma is an independent negative prognostic factor. However, no studies proved any morphologic pattern could be referred to as a prognostic factor. Thus, we aim to investigate the potential prognostic impact of VPI by extracting high-dimensional radiomics features on thin-section computed tomography (CT). A total of 327 surgically resected pathological-N0M0 lung adenocarcinoma 3 cm or less in size were evaluated. Radiomics signature was generated by calculating the contribution weight of each feature and validated using repeated leaving-one-out ten-fold cross-validation approach. The accuracy of proposed radiomics signature for predicting VPI achieved 90.5% with ROC analysis (AUC, 0.938, sensitivity, 90.6%, specificity, 93.2%, PPV: 91.2, NPV: 92.8). The cut-off value allowed separation of patients in the validation data into high-risk and low-risk groups with an odds ratio 12.01. Radiomics signature showed a concordance index of 0.895 and AIC value of 88.9% with regression analysis. Among these radiomics features, percentile 10%, wavEnLL_S_2, S_0_1_SumAverage represented as independent factors for determining VPI. Results suggested that radiomics signature on CT exhibited as an independent prognostic factor in discriminating VPI in lung adenocarcinoma and could potentially help to discriminate the prognosis difference in stage I lung adenocarcinoma.
内脏胸膜侵犯(VPI)在 I 期肺腺癌中是一个独立的负预后因素。然而,没有研究证明任何形态模式可以作为预后因素。因此,我们旨在通过提取薄层 CT 上的高维放射组学特征来研究 VPI 的潜在预后影响。共评估了 327 例大小为 3cm 或更小的手术切除病理-N0M0 肺腺癌患者。通过计算每个特征的贡献权重生成放射组学特征,并使用重复留一法十折交叉验证方法进行验证。ROC 分析显示,所提出的放射组学特征预测 VPI 的准确率为 90.5%(AUC:0.938,敏感性:90.6%,特异性:93.2%,PPV:91.2%,NPV:92.8%)。截断值允许将验证数据中的患者分为高危和低危组,优势比为 12.01。放射组学特征与回归分析的一致性指数为 0.895,AIC 值为 88.9%。在这些放射组学特征中,第 10%百分位数、wavEnLL_S_2、S_0_1_SumAverage 代表了确定 VPI 的独立因素。结果表明,CT 上的放射组学特征在鉴别肺腺癌中的 VPI 方面表现出独立的预后因素,可能有助于鉴别 I 期肺腺癌的预后差异。