Suppr超能文献

通过一致性聚类进行连接组分类可提高群体神经影像学研究中的可分离性。

Connectome sorting by consensus clustering increases separability in group neuroimaging studies.

作者信息

Rasero Javier, Diez Ibai, Cortes Jesus M, Marinazzo Daniele, Stramaglia Sebastiano

机构信息

Biocruces Health Research Institute, Hospital Universitario de Cruces, Barakaldo, Spain.

Functional Neurology Research Group, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.

出版信息

Netw Neurosci. 2019 Feb 1;3(2):325-343. doi: 10.1162/netn_a_00074. eCollection 2019.

Abstract

A fundamental challenge in preprocessing pipelines for neuroimaging datasets is to increase the signal-to-noise ratio for subsequent analyses. In the same line, we suggest here that the application of the consensus clustering approach to brain connectivity matrices can be a valid additional step for to find subgroups of subjects with reduced intragroup variability and therefore increasing the separability of the distinct subgroups when connectomes are used as a biomarker. Moreover, by partitioning the data with consensus clustering before any group comparison (for instance, between a healthy population vs. a pathological one), we demonstrate that unique regions within each cluster arise and bring new information that could be relevant from a clinical point of view.

摘要

神经影像数据集预处理流程中的一个基本挑战是提高后续分析的信噪比。同样,我们在此提出,将一致性聚类方法应用于脑连接矩阵,可以作为一个有效的额外步骤,用于找到组内变异性降低的受试者亚组,从而在将连接组用作生物标志物时增加不同亚组的可分离性。此外,通过在任何组间比较(例如,健康人群与患病群体之间)之前用一致性聚类对数据进行划分,我们证明每个聚类中会出现独特的区域,并带来从临床角度可能相关的新信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/04de/6370473/a8cef403c18d/netn-03-325-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验