Rasero Javier, Diez Ibai, Cortes Jesus M, Marinazzo Daniele, Stramaglia Sebastiano
Biocruces Health Research Institute, Hospital Universitario de Cruces, Barakaldo, Spain.
Functional Neurology Research Group, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
Netw Neurosci. 2019 Feb 1;3(2):325-343. doi: 10.1162/netn_a_00074. eCollection 2019.
A fundamental challenge in preprocessing pipelines for neuroimaging datasets is to increase the signal-to-noise ratio for subsequent analyses. In the same line, we suggest here that the application of the consensus clustering approach to brain connectivity matrices can be a valid additional step for to find subgroups of subjects with reduced intragroup variability and therefore increasing the separability of the distinct subgroups when connectomes are used as a biomarker. Moreover, by partitioning the data with consensus clustering before any group comparison (for instance, between a healthy population vs. a pathological one), we demonstrate that unique regions within each cluster arise and bring new information that could be relevant from a clinical point of view.
神经影像数据集预处理流程中的一个基本挑战是提高后续分析的信噪比。同样,我们在此提出,将一致性聚类方法应用于脑连接矩阵,可以作为一个有效的额外步骤,用于找到组内变异性降低的受试者亚组,从而在将连接组用作生物标志物时增加不同亚组的可分离性。此外,通过在任何组间比较(例如,健康人群与患病群体之间)之前用一致性聚类对数据进行划分,我们证明每个聚类中会出现独特的区域,并带来从临床角度可能相关的新信息。