NetS3 Laboratory, Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, Genova, Italy.
Department of Biomedical and Clinical Sciences "Luigi Sacco", Università di Milano, Milano, Italy.
Sci Rep. 2018 Apr 3;8(1):5578. doi: 10.1038/s41598-018-23853-x.
Neuronal responses to external stimuli vary from trial to trial partly because they depend on continuous spontaneous variations of the state of neural circuits, reflected in variations of ongoing activity prior to stimulus presentation. Understanding how post-stimulus responses relate to the pre-stimulus spontaneous activity is thus important to understand how state dependence affects information processing and neural coding, and how state variations can be discounted to better decode single-trial neural responses. Here we exploited high-resolution CMOS electrode arrays to record simultaneously from thousands of electrodes in in-vitro cultures stimulated at specific sites. We used information-theoretic analyses to study how ongoing activity affects the information that neuronal responses carry about the location of the stimuli. We found that responses exhibited state dependence on the time between the last spontaneous burst and the stimulus presentation and that the dependence could be described with a linear model. Importantly, we found that a small number of selected neurons carry most of the stimulus information and contribute to the state-dependent information gain. This suggests that a major value of large-scale recording is that it individuates the small subset of neurons that carry most information and that benefit the most from knowledge of its state dependence.
神经元对外部刺激的反应在不同试验中有所变化,部分原因是它们取决于神经回路状态的持续自发变化,这种变化反映在刺激呈现前持续活动的变化中。因此,了解刺激后反应与刺激前自发活动的关系对于理解状态依赖性如何影响信息处理和神经编码,以及如何排除状态变化以更好地解码单试次神经反应非常重要。在这里,我们利用高分辨率 CMOS 电极阵列在特定部位刺激的体外培养物中同时从数千个电极进行记录。我们使用信息论分析来研究持续活动如何影响神经元反应携带的关于刺激位置的信息。我们发现,反应表现出与最后一次自发爆发和刺激呈现之间的时间的状态依赖性,并且可以用线性模型来描述这种依赖性。重要的是,我们发现一小部分选定的神经元携带了大部分刺激信息,并对状态依赖的信息增益做出了贡献。这表明,大规模记录的一个主要价值在于,它可以区分出携带大部分信息的神经元的一小部分子集,并且从其状态依赖性的知识中受益最大。