Suppr超能文献

线粒体 ATP 合酶二聚体由于长程膜诱导力而自发缔合。

Mitochondrial ATP synthase dimers spontaneously associate due to a long-range membrane-induced force.

机构信息

Theoretical Molecular Biophysics Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD.

Lawrence Berkeley National Labs, Berkeley, CA

出版信息

J Gen Physiol. 2018 May 7;150(5):763-770. doi: 10.1085/jgp.201812033. Epub 2018 Apr 11.

Abstract

Adenosine triphosphate (ATP) synthases populate the inner membranes of mitochondria, where they produce the majority of the ATP required by the cell. From yeast to vertebrates, cryoelectron tomograms of these membranes have consistently revealed a very precise organization of these enzymes. Rather than being scattered throughout the membrane, the ATP synthases form dimers, and these dimers are organized into rows that extend for hundreds of nanometers. The rows are only observed in the membrane invaginations known as cristae, specifically along their sharply curved edges. Although the presence of these macromolecular structures has been irrefutably linked to the proper development of cristae morphology, it has been unclear what drives the formation of the rows and why they are specifically localized in the cristae. In this study, we present a quantitative molecular-simulation analysis that strongly suggests that the dimers of ATP synthases organize into rows spontaneously, driven by a long-range attractive force that arises from the relief of the overall elastic strain of the membrane. The strain is caused by the V-like shape of the dimers, unique among membrane protein complexes, which induces a strong deformation in the surrounding membrane. The process of row formation is therefore not a result of direct protein-protein interactions or a specific lipid composition of the membrane. We further hypothesize that, once assembled, the ATP synthase dimer rows prime the inner mitochondrial membrane to develop folds and invaginations by causing macroscopic membrane ridges that ultimately become the edges of cristae. In this way, mitochondrial ATP synthases would contribute to the generation of a morphology that maximizes the surface area of the inner membrane, and thus ATP production. Finally, we outline key experiments that would be required to verify or refute this hypothesis.

摘要

三磷酸腺苷(ATP)合酶分布在线粒体的内膜上,在这里它们产生细胞所需的大部分 ATP。从酵母到脊椎动物,这些膜的冷冻电子断层扫描图一直揭示了这些酶非常精确的组织方式。ATP 合酶不是散布在膜中,而是形成二聚体,这些二聚体排列成延伸数百纳米的行。这些行仅在称为嵴的膜内陷中观察到,特别是沿着其急剧弯曲的边缘。尽管这些大分子结构的存在已无可置疑地与嵴形态的正常发育相关联,但驱动这些行形成的原因以及它们为何专门定位于嵴中尚不清楚。在这项研究中,我们提出了一种定量分子模拟分析,强烈表明 ATP 合酶的二聚体自发地排列成行,这是由膜整体弹性应变的缓解引起的长程吸引力驱动的。这种应变是由二聚体的 V 形形状引起的,这在膜蛋白复合物中是独特的,它会导致周围膜产生强烈的变形。因此,行形成的过程不是直接的蛋白质-蛋白质相互作用或膜的特定脂质组成的结果。我们进一步假设,一旦组装完成,ATP 合酶二聚体行通过在最终成为嵴边缘的宏观膜脊引起内线粒体膜的折叠和内陷,从而为其定型。通过这种方式,线粒体 ATP 合酶有助于生成一种最大限度地增加内膜表面积的形态,从而提高 ATP 的产生。最后,我们概述了需要进行的关键实验,以验证或反驳这一假设。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2b2/5940253/91c0b5037e09/JGP_201812033_Fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验