Suppr超能文献

使用脉冲神经网络和卷积脉冲神经网络推进基于脑电图的压力检测。

Advancing EEG based stress detection using spiking neural networks and convolutional spiking neural networks.

作者信息

Joshi Aaditya, Matharu Paramveer Singh, Malviya Lokesh, Kumar Manoj, Jadhav Akshay

机构信息

VIT Bhopal University, Sehore, Madhya Pradesh, India.

Manipal University Jaipur, Jaipur, Rajasthan, India.

出版信息

Sci Rep. 2025 Jul 19;15(1):26267. doi: 10.1038/s41598-025-10270-0.

Abstract

Accurate and efficient analysis of Electroencephalogram (EEG) signals is crucial for applications like neurological diagnosis and Brain-Computer Interfaces (BCI). Traditional methods often fall short in capturing the intricate temporal dynamics inherent in EEG data. This paper explores the use of Convolutional Spiking Neural Networks (CSNNs) to enhance EEG signal classification. We apply Discrete Wavelet Transform (DWT) for feature extraction and evaluate CSNN performance on the Physionet EEG dataset, benchmarking it against traditional deep learning and machine learning methods. The findings indicate that CSNNs achieve high accuracy, reaching 98.75% in 10-fold cross-validation, and an impressive F1 score of 98.60%. Notably, this F1-score represents an improvement over previous benchmarks, highlighting the effectiveness of our approach. Along with offering advantages in temporal precision and energy efficiency, CSNNs emerge as a promising solution for next-generation EEG analysis systems.

摘要

准确而高效地分析脑电图(EEG)信号对于神经诊断和脑机接口(BCI)等应用至关重要。传统方法在捕捉EEG数据中固有的复杂时间动态方面往往存在不足。本文探讨了使用卷积脉冲神经网络(CSNN)来增强EEG信号分类。我们应用离散小波变换(DWT)进行特征提取,并在Physionet EEG数据集上评估CSNN的性能,将其与传统深度学习和机器学习方法进行基准测试。研究结果表明,CSNN具有很高的准确率,在10折交叉验证中达到了98.75%,F1分数高达98.60%。值得注意的是,这个F1分数比之前的基准有所提高,突出了我们方法的有效性。除了在时间精度和能源效率方面具有优势外,CSNN还成为下一代EEG分析系统的一个有前途的解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc7f/12276335/38552b2ab4dd/41598_2025_10270_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验