Suppr超能文献

基于二维 Gabor 小波的自动人类颅骨标志点定位。

Automated human skull landmarking with 2D Gabor wavelets.

机构信息

Department of Oral & Maxillofacial Surgery, Special Dental Care, and Orthodontics, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands. Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden, Netherlands. Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands.

出版信息

Phys Med Biol. 2018 May 16;63(10):105011. doi: 10.1088/1361-6560/aabfa0.

Abstract

Landmarking of CT scans is an important step in the alignment of skulls that is key in surgery planning, pre-/post-surgery comparisons, and morphometric studies. We present a novel method for automatically locating anatomical landmarks on the surface of cone beam CT-based image models of human skulls using 2D Gabor wavelets and ensemble learning. The algorithm is validated via human inter- and intra-rater comparisons on a set of 39 scans and a skull superimposition experiment with an established surgery planning software (Maxilim). Automatic landmarking results in an accuracy of 1-2 mm for a subset of landmarks around the nose area as compared to a gold standard derived from human raters. These landmarks are located in eye sockets and lower jaw, which is competitive with or surpasses inter-rater variability. The well-performing landmark subsets allow for the automation of skull superimposition in clinical applications. Our approach delivers accurate results, has modest training requirements (training set size of 30-40 items) and is generic, so that landmark sets can be easily expanded or modified to accommodate shifting landmark interests, which are important requirements for the landmarking of larger cohorts.

摘要

CT 扫描的标志定位是颅骨配准的重要步骤,这是手术规划、术前/术后比较和形态计量研究的关键。我们提出了一种使用二维 Gabor 小波和集成学习自动定位基于锥形束 CT 的人类颅骨图像模型表面解剖标志的新方法。该算法通过在一组 39 个扫描和一个与既定手术计划软件(Maxilim)的颅骨叠加实验中的人类内部和内部评分者比较进行了验证。与从人类评分者得出的金标准相比,自动标志定位在鼻子区域周围的一组标志中达到了 1-2 毫米的精度。这些标志位于眼眶和下颌骨中,与内部评分者的变异性相当或超过。表现良好的地标子集允许在临床应用中实现颅骨叠加的自动化。我们的方法提供了准确的结果,具有适度的训练要求(训练集大小为 30-40 个项目),并且是通用的,因此地标集可以轻松扩展或修改,以适应地标兴趣的转移,这对于地标更大的队列非常重要。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验