Laboratoire de Chimie Physique, UMR CNRS 8000, Université Paris-Sud, 91405 ORSAY Cedex, France.
Laboratoire de Chimie Physique, UMR CNRS 8000, Université Paris-Sud, 91405 ORSAY Cedex, France.
J Colloid Interface Sci. 2018 Sep 1;525:31-38. doi: 10.1016/j.jcis.2018.04.017. Epub 2018 Apr 5.
The potential benefit of gold nanoparticles (GNP) to radiotherapy has been demonstrated in a range of cell lines and radiation sources as well as in rodent models, sometimes with contradictory results. Few experimental studies have explored the involved deleterious species, hydroxyl radical being so far the most cited, whereas theoretical studies have usually focused on secondary electrons emitted from GNP, making comparison between these two approaches difficult. Here we focus on the physico-chemical step (i.e. radical production) and report the first experimental determination of both hydroxyl radicals and solvated electrons yields of formation in the presence of GNP. We also compare these yields between X- and γ-rays under different atmospheres. Our main finding is a massive and equivalent production of both species under X- and more surprisingly γ-rays. For concentration as low as 1 nM (0.02% wt of gold), both radiations lead to 3 to 4 times more radicals than water radiolysis without GNP. This is in contradiction with a physical prediction of dose enhancement. Supported by our whole set of experiments the key role of water molecules at the nanoparticle interface in the radical production emerges. This leads us to propose the paramount importance of the physico-chemical step compared to the physical one. Classical approaches based on energy-absorption coefficients and electron ejections should therefore be revisited.
金纳米粒子(GNP)在一系列细胞系和放射源以及啮齿动物模型中对放射治疗的潜在益处已经得到了证明,有时结果相互矛盾。很少有实验研究探索涉及的有害物种,羟基自由基迄今为止是最常被引用的,而理论研究通常集中在从 GNP 发射的次级电子上,这使得这两种方法之间的比较变得困难。在这里,我们专注于物理化学步骤(即自由基生成),并报告了首次在存在 GNP 的情况下测定羟基自由基和溶剂化电子生成产额的实验结果。我们还比较了不同气氛下 X 射线和γ射线之间的这些产额。我们的主要发现是,在 X 射线和更令人惊讶的γ射线下,两种物质的产量都非常大且相当。对于浓度低至 1nM(0.02%wt 的金),两种辐射导致的自由基比没有 GNP 的水辐射分解产生的自由基多 3 到 4 倍。这与剂量增强的物理预测相矛盾。我们的整套实验支持了在自由基生成中纳米颗粒界面水分子的关键作用。这使我们提出与物理步骤相比,物理化学步骤更为重要。因此,应该重新审视基于能量吸收系数和电子发射的经典方法。