Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
Department of Biomedical Engineering, The State University of New York at Buffalo, Buffalo, NY, 14260, USA.
Nat Commun. 2018 May 2;9(1):1764. doi: 10.1038/s41467-018-04251-3.
Thermal sensing with fine spatial resolution is important to the study of many scientific areas. While modern microscopy systems allow optical detection at high spatial resolution, their intrinsic functions are mainly focused on imaging but limited in detecting other physical parameters, for example, mapping thermal variations. Here, with a coating of an optical exceptional point structure, we demonstrate a low-cost but efficient multifunctional microscope slide, supporting real-time monitoring and mapping of temperature distribution and heat transport in addition to conventional microscopic imaging. The square-root dependency associated with an exceptional point leads to enhanced thermal sensitivity for precise temperature measurement. With a microscale resolution, real-time thermal mapping is conducted, showing dynamic temperature variation in a spatially defined area. Our strategy of integrating low-cost and efficient optical sensing technologies on a conventional glass slide enables simultaneous detection of multiple environmental parameters, producing improved experimental control at the microscale in various scientific disciplines.
热感应具有良好的空间分辨率对许多科学领域的研究都很重要。虽然现代显微镜系统允许在高空间分辨率下进行光学检测,但它们的固有功能主要集中在成像上,而在检测其他物理参数方面则受到限制,例如,热变化的映射。在这里,我们通过涂层的光学异常点结构,展示了一种低成本但高效的多功能显微镜载玻片,它支持实时监测和映射温度分布和热传递,以及传统的显微镜成像。与异常点相关的平方根依赖性导致了更精确的温度测量的增强的热灵敏度。具有微尺度分辨率,实时进行热映射,显示空间定义区域中的动态温度变化。我们将低成本和高效的光学传感技术集成在传统玻璃载玻片上的策略,能够在多个科学领域中实现微尺度上的多个环境参数的同时检测,从而改善实验控制。