Suppr超能文献

受贻贝启发的 3D 纤维支架用于工程纳米材料的芯片上心脏毒性研究。

Mussel-inspired 3D fiber scaffolds for heart-on-a-chip toxicity studies of engineered nanomaterials.

机构信息

Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, MA, 02138, USA.

Department of Micro- and Nanotechnology, Technical University of Denmark, 2800, Kongens Lyngby, Denmark.

出版信息

Anal Bioanal Chem. 2018 Sep;410(24):6141-6154. doi: 10.1007/s00216-018-1106-7. Epub 2018 May 10.

Abstract

Due to the unique physicochemical properties exhibited by materials with nanoscale dimensions, there is currently a continuous increase in the number of engineered nanomaterials (ENMs) used in consumer goods. However, several reports associate ENM exposure to negative health outcomes such as cardiovascular diseases. Therefore, understanding the pathological consequences of ENM exposure represents an important challenge, requiring model systems that can provide mechanistic insights across different levels of ENM-based toxicity. To achieve this, we developed a mussel-inspired 3D microphysiological system (MPS) to measure cardiac contractility in the presence of ENMs. While multiple cardiac MPS have been reported as alternatives to in vivo testing, most systems only partially recapitulate the native extracellular matrix (ECM) structure. Here, we show how adhesive and aligned polydopamine (PDA)/polycaprolactone (PCL) nanofiber can be used to emulate the 3D native ECM environment of the myocardium. Such nanofiber scaffolds can support the formation of anisotropic and contractile muscular tissues. By integrating these fibers in a cardiac MPS, we assessed the effects of TiO and Ag nanoparticles on the contractile function of cardiac tissues. We found that these ENMs decrease the contractile function of cardiac tissues through structural damage to tissue architecture. Furthermore, the MPS with embedded sensors herein presents a way to non-invasively monitor the effects of ENM on cardiac tissue contractility at different time points. These results demonstrate the utility of our MPS as an analytical platform for understanding the functional impacts of ENMs while providing a biomimetic microenvironment to in vitro cardiac tissue samples. Graphical Abstract Heart-on-a-chip integrated with mussel-inspired fiber scaffolds for a high-throughput toxicological assessment of engineered nanomaterials.

摘要

由于具有纳米尺寸的材料表现出独特的物理化学性质,目前用于消费品的工程纳米材料(ENM)的数量不断增加。然而,有几项报告将 ENM 暴露与心血管疾病等负面健康结果联系起来。因此,了解 ENM 暴露的病理后果是一个重要的挑战,需要能够提供跨不同 ENM 毒性水平的机制见解的模型系统。为了实现这一目标,我们开发了一种受贻贝启发的 3D 微生理系统(MPS),以在存在 ENM 的情况下测量心脏收缩性。虽然已经有多个心脏 MPS 被报道为体内测试的替代品,但大多数系统仅部分再现了天然细胞外基质(ECM)结构。在这里,我们展示了如何使用粘性和对齐的聚多巴胺(PDA)/聚己内酯(PCL)纳米纤维来模拟心肌的 3D 天然 ECM 环境。这种纳米纤维支架可以支持各向异性和收缩性肌肉组织的形成。通过将这些纤维集成到心脏 MPS 中,我们评估了 TiO 和 Ag 纳米颗粒对心脏组织收缩功能的影响。我们发现,这些 ENM 通过对组织结构的损伤降低了心脏组织的收缩功能。此外,本文中嵌入传感器的 MPS 提供了一种非侵入性监测 ENM 对心脏组织收缩性在不同时间点影响的方法。这些结果表明,我们的 MPS 作为一种分析平台具有实用性,可用于了解 ENM 的功能影响,同时为体外心脏组织样本提供仿生微环境。

相似文献

1
Mussel-inspired 3D fiber scaffolds for heart-on-a-chip toxicity studies of engineered nanomaterials.
Anal Bioanal Chem. 2018 Sep;410(24):6141-6154. doi: 10.1007/s00216-018-1106-7. Epub 2018 May 10.
2
Toward improved myocardial maturity in an organ-on-chip platform with immature cardiac myocytes.
Exp Biol Med (Maywood). 2017 Nov;242(17):1643-1656. doi: 10.1177/1535370217701006. Epub 2017 Mar 26.
3
Interwoven Aligned Conductive Nanofiber Yarn/Hydrogel Composite Scaffolds for Engineered 3D Cardiac Anisotropy.
ACS Nano. 2017 Jun 27;11(6):5646-5659. doi: 10.1021/acsnano.7b01062. Epub 2017 Jun 7.
4
Combined effect of mussel-inspired surface modification and topographical cues on the behavior of skeletal myoblasts.
Adv Healthc Mater. 2013 Nov;2(11):1445-50. doi: 10.1002/adhm.201300067. Epub 2013 Apr 15.
5
Mussel inspired surface functionalization of electrospun nanofibers for bio-applications.
Phys Chem Chem Phys. 2013 Oct 28;15(40):17029-37. doi: 10.1039/c3cp52651h.
7
Effect of fiber diameter on the assembly of functional 3D cardiac patches.
Nanotechnology. 2015 Jul 24;26(29):291002. doi: 10.1088/0957-4484/26/29/291002. Epub 2015 Jul 2.
9
PGS:Gelatin nanofibrous scaffolds with tunable mechanical and structural properties for engineering cardiac tissues.
Biomaterials. 2013 Sep;34(27):6355-66. doi: 10.1016/j.biomaterials.2013.04.045. Epub 2013 Jun 6.

引用本文的文献

1
Aging on Chip: Harnessing the Potential of Microfluidic Technologies in Aging and Rejuvenation Research.
Adv Healthc Mater. 2025 Aug;14(20):e2500217. doi: 10.1002/adhm.202500217. Epub 2025 Jun 12.
2
Cardiac Tissue Engineering for Translational Cardiology: From In Vitro Models to Regenerative Therapies.
Bioengineering (Basel). 2025 May 14;12(5):518. doi: 10.3390/bioengineering12050518.
3
Heart-on-a-chip: a revolutionary organ-on-chip platform for cardiovascular disease modeling.
J Transl Med. 2025 Jan 30;23(1):132. doi: 10.1186/s12967-024-05986-y.
4
Construction, Features and Regulatory Aspects of Organ-chip for Drug Delivery Applications: Advances and Prospective.
Curr Pharm Des. 2024;30(25):1952-1965. doi: 10.2174/0113816128305296240523112043.
5
The emerging role of heart-on-a-chip systems in delineating mechanisms of SARS-CoV-2-induced cardiac dysfunction.
Bioeng Transl Med. 2023 Aug 8;9(3):e10581. doi: 10.1002/btm2.10581. eCollection 2024 May.
6
Advances in cardiac tissue engineering and heart-on-a-chip.
J Biomed Mater Res A. 2024 Apr;112(4):492-511. doi: 10.1002/jbm.a.37633. Epub 2023 Nov 1.
7
Pumped and pumpless microphysiological systems to study (nano)therapeutics.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2023 Sep-Oct;15(5):e1911. doi: 10.1002/wnan.1911. Epub 2023 Jul 18.
8
Nanoparticles-induced potential toxicity on human health: Applications, toxicity mechanisms, and evaluation models.
MedComm (2020). 2023 Jul 14;4(4):e327. doi: 10.1002/mco2.327. eCollection 2023 Aug.
9
Organs-on-a-chip: a union of tissue engineering and microfabrication.
Trends Biotechnol. 2023 Mar;41(3):410-424. doi: 10.1016/j.tibtech.2022.12.018. Epub 2023 Jan 31.
10
Three-Dimensional Cell Drawing Technique in Hydrogel Using Micro Injection System.
Micromachines (Basel). 2022 Oct 30;13(11):1866. doi: 10.3390/mi13111866.

本文引用的文献

3
Soy Protein/Cellulose Nanofiber Scaffolds Mimicking Skin Extracellular Matrix for Enhanced Wound Healing.
Adv Healthc Mater. 2018 May;7(9):e1701175. doi: 10.1002/adhm.201701175. Epub 2018 Jan 23.
5
The acute toxic effects of silver nanoparticles on myocardial transmembrane potential, I and I channels and heart rhythm in mice.
Nanotoxicology. 2017 Aug;11(6):827-837. doi: 10.1080/17435390.2017.1367047. Epub 2017 Aug 23.
6
Preparation, characterization, and in vitro dosimetry of dispersed, engineered nanomaterials.
Nat Protoc. 2017 Feb;12(2):355-371. doi: 10.1038/nprot.2016.172. Epub 2017 Jan 19.
7
Latent Oxidative Polymerization of Catecholamines as Potential Cross-linkers for Biocompatible and Multifunctional Biopolymer Scaffolds.
ACS Appl Mater Interfaces. 2016 Nov 30;8(47):32266-32281. doi: 10.1021/acsami.6b12544. Epub 2016 Nov 15.
8
Instrumented cardiac microphysiological devices via multimaterial three-dimensional printing.
Nat Mater. 2017 Mar;16(3):303-308. doi: 10.1038/nmat4782. Epub 2016 Oct 24.
9
Cardiotoxicity of nano-particles.
Life Sci. 2016 Nov 15;165:91-99. doi: 10.1016/j.lfs.2016.09.017. Epub 2016 Sep 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验