Systems Biotechnology, Faculty of Mechanical Engineering, Technical University of Munich, Garching, Germany.
PLoS One. 2018 May 17;13(5):e0197420. doi: 10.1371/journal.pone.0197420. eCollection 2018.
The presence of standardised tools and methods to measure and represent accurately biological parts and functions is a prerequisite for successful metabolic engineering and crucial to understand and predict the behaviour of synthetic genetic circuits. Many synthetic gene networks are based on transcriptional circuits, thus information on transcriptional and translational activity is important for understanding and fine-tuning the synthetic function. To this end, we have developed a toolkit to analyse systematically the transcriptional and translational activity of a specific synthetic part in vivo. It is based on the plasmid pTRA and allows the assignment of specific transcriptional and translational outputs to the gene(s) of interest (GOI) and to compare different genetic setups. By this, the optimal combination of transcriptional strength and translational activity can be identified. The design is tested in a case study using the gene encoding the fluorescent mCherry protein as GOI. We show the intracellular dynamics of mRNA and protein formation and discuss the potential and shortcomings of the pTRA plasmid.
存在标准化的工具和方法来准确测量和表示生物部件和功能是成功进行代谢工程的前提,对于理解和预测合成遗传回路的行为也至关重要。许多合成基因网络基于转录回路,因此关于转录和翻译活性的信息对于理解和微调合成功能很重要。为此,我们开发了一个工具包,用于系统地分析体内特定合成部件的转录和翻译活性。它基于质粒 pTRA,可以将特定的转录和翻译输出分配给感兴趣的基因(GOI),并比较不同的遗传设置。通过这种方式,可以确定转录强度和翻译活性的最佳组合。该设计在使用编码荧光 mCherry 蛋白的基因作为 GOI 的案例研究中进行了测试。我们展示了 mRNA 和蛋白质形成的细胞内动力学,并讨论了 pTRA 质粒的潜力和缺点。