Suppr超能文献

最优非线性网络控制器设计用于阿尔茨海默病。

Design of optimal nonlinear network controllers for Alzheimer's disease.

机构信息

Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta, Canada.

Department of Radiology and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.

出版信息

PLoS Comput Biol. 2018 May 24;14(5):e1006136. doi: 10.1371/journal.pcbi.1006136. eCollection 2018 May.

Abstract

Brain stimulation can modulate the activity of neural circuits impaired by Alzheimer's disease (AD), having promising clinical benefit. However, all individuals with the same condition currently receive identical brain stimulation, with limited theoretical basis for this generic approach. In this study, we introduce a control theory framework for obtaining exogenous signals that revert pathological electroencephalographic activity in AD at a minimal energetic cost, while reflecting patients' biological variability. We used anatomical networks obtained from diffusion magnetic resonance images acquired by the Alzheimer's Disease Neuroimaging Initiative (ADNI) as mediators for the interaction between Duffing oscillators. The nonlinear nature of the brain dynamics is preserved, given that we extend the so-called state-dependent Riccati equation control to reflect the stimulation objective in the high-dimensional neural system. By considering nonlinearities in our model, we identified regions for which control inputs fail to correct abnormal activity. There are changes to the way stimulated regions are ranked in terms of the energetic cost of controlling the entire network, from a linear to a nonlinear approach. We also found that limbic system and basal ganglia structures constitute the top target locations for stimulation in AD. Patients with highly integrated anatomical networks-namely, networks having low average shortest path length, high global efficiency-are the most suitable candidates for the propagation of stimuli and consequent success on the control task. Other diseases associated with alterations in brain dynamics and the self-control mechanisms of the brain can be addressed through our framework.

摘要

脑刺激可以调节阿尔茨海默病(AD)引起的神经回路活动,具有广阔的临床应用前景。然而,目前所有患有相同疾病的个体都接受相同的脑刺激,这种通用方法缺乏理论基础。在这项研究中,我们引入了一种控制理论框架,以获得外源性信号,以最小的能量成本使 AD 的病理性脑电图活动恢复正常,同时反映患者的生物学变异性。我们使用来自阿尔茨海默病神经影像学倡议(ADNI)获得的扩散磁共振图像的解剖网络作为 Duffing 振荡器之间相互作用的中介。由于我们将所谓的状态相关 Riccati 方程控制扩展到反映高维神经网络中的刺激目标,因此保留了大脑动力学的非线性性质。通过考虑模型中的非线性,我们确定了控制输入无法纠正异常活动的区域。从线性到非线性方法,控制整个网络的能量成本对刺激区域的排名方式发生了变化。我们还发现,边缘系统和基底神经节结构构成了 AD 中刺激的首选目标位置。具有高度整合的解剖网络的患者——即具有低平均最短路径长度、高全局效率的网络——是刺激传播和控制任务成功的最适合候选者。其他与大脑动力学变化和大脑自我控制机制相关的疾病可以通过我们的框架来解决。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验