Chakraborty Manas, Tarasovetc Ekaterina V, Grishchuk Ekaterina L
Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
Methods Cell Biol. 2018;144:307-327. doi: 10.1016/bs.mcb.2018.03.018. Epub 2018 May 11.
During mitosis, kinetochores often bind to the walls of spindle microtubules, but these lateral interactions are then converted into a different binding mode in which microtubule plus-ends are embedded at kinetochores, forming dynamic "end-on" attachments. This remarkable configuration allows continuous addition or loss of tubulin subunits from the kinetochore-bound microtubule ends, concomitant with movement of the chromosomes. Here, we describe novel experimental assays for investigating this phenomenon using a well-defined in vitro reconstitution system visualized by fluorescence microscopy. Our assays take advantage of the kinetochore kinesin CENP-E, which assists in microtubule end conversion in vertebrate cells. In the experimental setup, CENP-E is conjugated to coverslip-immobilized microbeads coated with selected kinetochore components, creating conditions suitable for microtubule gliding and formation of either static or dynamic end-on microtubule attachment. This system makes it possible to analyze, in a systematic and rigorous manner, the molecular friction generated by the microtubule wall-binding proteins during lateral transport, as well as the ability of these proteins to establish and maintain association with microtubule plus-end, providing unique insights into the specific activities of various kinetochore components.
在有丝分裂过程中,动粒通常与纺锤体微管的管壁结合,但这些侧向相互作用随后会转变为另一种结合模式,即微管正端嵌入动粒,形成动态的“端对端”附着。这种显著的结构允许动粒结合的微管末端持续添加或丢失微管蛋白亚基,同时伴随着染色体的移动。在这里,我们描述了一种新颖的实验方法,用于利用荧光显微镜观察的明确体外重建系统来研究这一现象。我们的实验利用了动粒驱动蛋白CENP-E,它有助于脊椎动物细胞中的微管末端转换。在实验设置中,CENP-E与涂有选定动粒成分的固定在盖玻片上的微珠偶联,创造出适合微管滑动以及形成静态或动态端对端微管附着的条件。该系统使得能够系统且严格地分析微管壁结合蛋白在侧向运输过程中产生的分子摩擦力,以及这些蛋白与微管正端建立和维持关联的能力,从而为各种动粒成分的具体活性提供独特的见解。