Rai B Rajani, Rai B Karunakara, A S Mamatha, Sooda Kavitha
Dept.of ECE, Vivekananda College of Engineering and Technology, Puttur, D.K., India.
Dept. of ECE, Nitte Meenakshi Institute of Technology, Bangalore, India.
MethodsX. 2025 Mar 7;14:103257. doi: 10.1016/j.mex.2025.103257. eCollection 2025 Jun.
This paper presents a comprehensive survey on categorizing focal and non-focal epilepsy using Electroencephalogram (EEG) signals. It emphasizes how recent advances in machine learning and deep learning methodologies assists in overcoming the existing challenges in classification. The paper synthesizes cutting-edge techniques with the focus on the application of hybrid models that combine traditional signal processing techniques with machine learning algorithms. By highlighting key breakthroughs in the field, the paper aims to propose novel directions for improving classification precision. Furthermore, the paper delves into the challenges faced by current methods and the possible solutions. The paper concludes with the discussion on potential future research directions, especially in areas of multimodal data integration and real-time seizure prediction, and emphasizes the potential for AI-driven personalized epilepsy treatment techniques.
本文对使用脑电图(EEG)信号对局灶性和非局灶性癫痫进行分类进行了全面综述。它强调了机器学习和深度学习方法的最新进展如何有助于克服分类中存在的挑战。本文综合了前沿技术,重点关注将传统信号处理技术与机器学习算法相结合的混合模型的应用。通过突出该领域的关键突破,本文旨在为提高分类精度提出新的方向。此外,本文深入探讨了当前方法面临的挑战以及可能的解决方案。本文最后讨论了潜在的未来研究方向,特别是在多模态数据集成和实时癫痫发作预测领域,并强调了人工智能驱动的个性化癫痫治疗技术的潜力。