Suppr超能文献

评估运动伪影去噪后功能连接预测大脑成熟度。

Evaluating the Prediction of Brain Maturity From Functional Connectivity After Motion Artifact Denoising.

机构信息

Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.

Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA.

出版信息

Cereb Cortex. 2019 Jun 1;29(6):2455-2469. doi: 10.1093/cercor/bhy117.

Abstract

The ability to make individual-level predictions from neuroanatomy has the potential to be particularly useful in child development. Previously, resting-state functional connectivity (RSFC) MRI has been used to successfully predict maturity and diagnosis of typically and atypically developing individuals. Unfortunately, submillimeter head motion in the scanner produces systematic, distance-dependent differences in RSFC and may contaminate, and potentially facilitate, these predictions. Here, we evaluated individual age prediction with RSFC after stringent motion denoising. Using multivariate machine learning, we found that 57% of the variance in individual RSFC after motion artifact denoising was explained by age, while 4% was explained by residual effects of head motion. When RSFC data were not adequately denoised, 50% of the variance was explained by motion. Reducing motion-related artifact also revealed that prediction did not depend upon characteristics of functional connections previously hypothesized to mediate development (e.g., connection distance). Instead, successful age prediction relied upon sampling functional connections across multiple functional systems with strong, reliable RSFC within an individual. Our results demonstrate that RSFC across the brain is sufficiently robust to make individual-level predictions of maturity in typical development, and hence, may have clinical utility for the diagnosis and prognosis of individuals with atypical developmental trajectories.

摘要

从神经解剖学进行个体水平预测的能力在儿童发育中具有潜在的特别用处。先前,静息态功能连接 (RSFC) MRI 已被用于成功预测典型和非典型发育个体的成熟度和诊断。不幸的是,扫描器中亚毫米级别的头部运动会在 RSFC 中产生系统的、依赖距离的差异,并且可能会污染和潜在地促进这些预测。在这里,我们在严格的运动降噪后,使用 RSFC 评估个体年龄预测。使用多元机器学习,我们发现,在对运动伪影进行降噪后,个体 RSFC 的 57%的变异性可由年龄解释,而 4%的变异性可由头部运动的残留效应解释。当 RSFC 数据未得到充分降噪时,50%的变异性由运动解释。减少与运动相关的伪影还表明,预测并不依赖于先前假设为介导发育的功能连接的特征(例如,连接距离)。相反,成功的年龄预测依赖于在个体内部使用具有强而可靠的 RSFC 在多个功能系统中采样功能连接。我们的结果表明,大脑中的 RSFC 足够稳健,可以对典型发育中的成熟度进行个体水平的预测,因此,对于具有非典型发育轨迹的个体的诊断和预后可能具有临床应用价值。

相似文献

1
2
Global signal regression strengthens association between resting-state functional connectivity and behavior.
Neuroimage. 2019 Aug 1;196:126-141. doi: 10.1016/j.neuroimage.2019.04.016. Epub 2019 Apr 8.
3
Denoising the speaking brain: toward a robust technique for correcting artifact-contaminated fMRI data under severe motion.
Neuroimage. 2014 Dec;103:33-47. doi: 10.1016/j.neuroimage.2014.09.013. Epub 2014 Sep 16.
5
An evaluation of the efficacy, reliability, and sensitivity of motion correction strategies for resting-state functional MRI.
Neuroimage. 2018 May 1;171:415-436. doi: 10.1016/j.neuroimage.2017.12.073. Epub 2017 Dec 24.
6
Methods to detect, characterize, and remove motion artifact in resting state fMRI.
Neuroimage. 2014 Jan 1;84:320-41. doi: 10.1016/j.neuroimage.2013.08.048. Epub 2013 Aug 29.
7
A wavelet method for modeling and despiking motion artifacts from resting-state fMRI time series.
Neuroimage. 2014 Jul 15;95(100):287-304. doi: 10.1016/j.neuroimage.2014.03.012. Epub 2014 Mar 21.
8
Network-specific effects of age and in-scanner subject motion: a resting-state fMRI study of 238 healthy adults.
Neuroimage. 2012 Nov 15;63(3):1364-73. doi: 10.1016/j.neuroimage.2012.08.004. Epub 2012 Aug 10.
9
Mitigating head motion artifact in functional connectivity MRI.
Nat Protoc. 2018 Dec;13(12):2801-2826. doi: 10.1038/s41596-018-0065-y.
10
The impact of image smoothness on intrinsic functional connectivity and head motion confounds.
Neuroimage. 2014 Jul 15;95:13-21. doi: 10.1016/j.neuroimage.2014.03.035. Epub 2014 Mar 20.

引用本文的文献

1
Resting-state functional network segregation of the default mode network predicts valence bias across the lifespan.
Imaging Neurosci (Camb). 2024 Dec 19;2. doi: 10.1162/imag_a_00403. eCollection 2024.
2
Precision functional mapping reveals less inter-individual variability in the child vs. adult human brain.
bioRxiv. 2025 Jul 24:2025.07.21.665760. doi: 10.1101/2025.07.21.665760.
5
Network-level enrichment provides a framework for biological interpretation of machine learning results.
Netw Neurosci. 2024 Oct 1;8(3):762-790. doi: 10.1162/netn_a_00383. eCollection 2024.
6
Brain age as a biomarker for pathological versus healthy ageing - a REMEMBER study.
Alzheimers Res Ther. 2024 Jun 14;16(1):128. doi: 10.1186/s13195-024-01491-y.
8
Multimodal brain age prediction using machine learning: combining structural MRI and 5-HT2AR PET-derived features.
Geroscience. 2024 Oct;46(5):4123-4133. doi: 10.1007/s11357-024-01148-6. Epub 2024 Apr 26.
9
Simulating rigid head motion artifacts on brain magnitude MRI data-Outcome on image quality and segmentation of the cerebral cortex.
PLoS One. 2024 Apr 16;19(4):e0301132. doi: 10.1371/journal.pone.0301132. eCollection 2024.

本文引用的文献

2
Behavioral interventions for reducing head motion during MRI scans in children.
Neuroimage. 2018 May 1;171:234-245. doi: 10.1016/j.neuroimage.2018.01.023. Epub 2018 Jan 12.
3
Real-time motion analytics during brain MRI improve data quality and reduce costs.
Neuroimage. 2017 Nov 1;161:80-93. doi: 10.1016/j.neuroimage.2017.08.025. Epub 2017 Aug 10.
4
Precision Functional Mapping of Individual Human Brains.
Neuron. 2017 Aug 16;95(4):791-807.e7. doi: 10.1016/j.neuron.2017.07.011. Epub 2017 Jul 27.
5
An Expanded View of Complex Traits: From Polygenic to Omnigenic.
Cell. 2017 Jun 15;169(7):1177-1186. doi: 10.1016/j.cell.2017.05.038.
7
Benchmarking of participant-level confound regression strategies for the control of motion artifact in studies of functional connectivity.
Neuroimage. 2017 Jul 1;154:174-187. doi: 10.1016/j.neuroimage.2017.03.020. Epub 2017 Mar 14.
8
At risk of being risky: The relationship between "brain age" under emotional states and risk preference.
Dev Cogn Neurosci. 2017 Apr;24:93-106. doi: 10.1016/j.dcn.2017.01.010. Epub 2017 Feb 1.
9
Early brain development in infants at high risk for autism spectrum disorder.
Nature. 2017 Feb 15;542(7641):348-351. doi: 10.1038/nature21369.
10
Individual-specific features of brain systems identified with resting state functional correlations.
Neuroimage. 2017 Feb 1;146:918-939. doi: 10.1016/j.neuroimage.2016.08.032. Epub 2016 Sep 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验