Suppr超能文献

用于中红外波段一氧化碳气体传感的混合超材料吸收体平台

Hybrid Metamaterial Absorber Platform for Sensing of CO Gas at Mid-IR.

作者信息

Hasan Dihan, Lee Chengkuo

机构信息

Department of Electrical and Computer Engineering National University of Singapore 4 Engineering Drive 3 Singapore 117576 Singapore.

NUS Suzhou Research Institute (NUSRI) Suzhou Industrial Park Suzhou 215123 P. R. China.

出版信息

Adv Sci (Weinh). 2018 Feb 21;5(5):1700581. doi: 10.1002/advs.201700581. eCollection 2018 May.

Abstract

Application of two major classes of CO gas sensors, i.e., electrochemical and nondispersive infrared is predominantly impeded by the poor selectivity and large optical interaction length, respectively. Here, a novel "" absorber platform is presented by integrating the state-of-the-art complementary metal-oxide-semiconductor compatible metamaterial with a smart, gas-selective-trapping polymer for highly selective and miniaturized optical sensing of CO gas in the 5-8 µm mid-IR spectral window. The sensor offers a minimum of 40 ppm detection limit at ambient temperature on a small footprint (20 µm by 20 µm), fast response time (≈2 min), and low hysteresis. As a proof-of-concept, net absorption enhancement of 0.0282%/ppm and wavelength shift of 0.5319 nm ppm are reported. Furthermore, the gas- selective smart polymer is found to enable dual-mode multiplexed sensing for crosschecking and validation of gas concentration on a single platform. Additionally, unique sensing characteristics as determined by the operating wavelength and bandwidth are demonstrated. Also, large differential response of the metamaterial absorber platform for all-optical monitoring is explored. The results will pave the way for a physical understanding of metamaterial-based sensing when integrated with the mid-IR detector for readout and extending the mid-IR functionalities of selective polymers for the detection of technologically relevant gases.

摘要

两类主要的一氧化碳气体传感器,即电化学传感器和非分散红外传感器,分别因选择性差和光学相互作用长度大而受到主要阻碍。在此,通过将最先进的互补金属氧化物半导体兼容超材料与一种智能的、气体选择性捕获聚合物相结合,提出了一种新型的吸收器平台,用于在5-8微米中红外光谱窗口对一氧化碳气体进行高选择性和小型化光学传感。该传感器在环境温度下,在小尺寸(20微米×20微米)上具有最低40 ppm的检测限、快速响应时间(约2分钟)和低滞后性。作为概念验证,报告了0.0282%/ppm的净吸收增强和0.5319纳米/ppm的波长偏移。此外,发现气体选择性智能聚合物能够实现双模复用传感,以便在单个平台上对气体浓度进行交叉检查和验证。此外,还展示了由工作波长和带宽决定的独特传感特性。同时,还探索了超材料吸收器平台用于全光监测的大差分响应。这些结果将为理解与用于读出的中红外探测器集成时基于超材料的传感以及扩展用于检测技术相关气体的选择性聚合物的中红外功能奠定物理基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2276/5978960/9d75f93508b1/ADVS-5-1700581-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验