Suppr超能文献

病理图像的高效配准:一种主成分分析/图像重建联合方法。

EFFICIENT REGISTRATION OF PATHOLOGICAL IMAGES: A JOINT PCA/IMAGE-RECONSTRUCTION APPROACH.

作者信息

Han Xu, Yang Xiao, Aylward Stephen, Kwitt Roland, Niethammer Marc

机构信息

University of North Carolina (UNC) at Chapel Hill, USA.

Kitware Inc., USA.

出版信息

Proc IEEE Int Symp Biomed Imaging. 2017 Apr;2017:10-14. doi: 10.1109/ISBI.2017.7950456. Epub 2017 Jun 19.

Abstract

Registration involving one or more images containing pathologies is challenging, as standard image similarity measures and spatial transforms cannot account for common changes due to pathologies. Low-rank/Sparse (LRS) decomposition removes pathologies prior to registration; however, LRS is memory-demanding and slow, which limits its use on larger data sets. Additionally, LRS blurs normal tissue regions, which may degrade registration performance. This paper proposes an efficient alternative to LRS: (1) normal tissue appearance is captured by principal component analysis (PCA) and (2) blurring is avoided by an integrated model for pathology removal and image reconstruction. Results on synthetic and BRATS 2015 data demonstrate its utility.

摘要

涉及一个或多个包含病变的图像的配准具有挑战性,因为标准的图像相似性度量和空间变换无法考虑病变引起的常见变化。低秩/稀疏(LRS)分解在配准之前去除病变;然而,LRS对内存要求高且速度慢,这限制了它在更大数据集上的使用。此外,LRS会模糊正常组织区域,这可能会降低配准性能。本文提出了一种LRS的有效替代方法:(1)通过主成分分析(PCA)捕获正常组织外观,(2)通过用于病变去除和图像重建的集成模型避免模糊。在合成数据和BRATS 2015数据上的结果证明了其效用。

相似文献

3
Registration of Pathological Images.病理图像的登记
Simul Synth Med Imaging. 2016 Oct;9968:97-107. doi: 10.1007/978-3-319-46630-9_10. Epub 2016 Sep 23.
5
A Deep Network for Joint Registration and Reconstruction of Images with Pathologies.一种用于联合配准和重建病变图像的深度网络。
Mach Learn Med Imaging. 2020 Oct;12436:342-352. doi: 10.1007/978-3-030-59861-7_35. Epub 2020 Sep 29.
7
PCA-based groupwise image registration for quantitative MRI.基于主成分分析的定量 MRI 组间图像配准。
Med Image Anal. 2016 Apr;29:65-78. doi: 10.1016/j.media.2015.12.004. Epub 2015 Dec 19.

引用本文的文献

3
A Deep Network for Joint Registration and Reconstruction of Images with Pathologies.一种用于联合配准和重建病变图像的深度网络。
Mach Learn Med Imaging. 2020 Oct;12436:342-352. doi: 10.1007/978-3-030-59861-7_35. Epub 2020 Sep 29.

本文引用的文献

1
Registration of Pathological Images.病理图像的登记
Simul Synth Med Imaging. 2016 Oct;9968:97-107. doi: 10.1007/978-3-319-46630-9_10. Epub 2016 Sep 23.
2
Low-Rank Atlas Image Analyses in the Presence of Pathologies.存在病变情况下的低秩图谱图像分析
IEEE Trans Med Imaging. 2015 Dec;34(12):2583-91. doi: 10.1109/TMI.2015.2448556. Epub 2015 Jun 22.
3
The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS).多模态脑肿瘤图像分割基准(BRATS)。
IEEE Trans Med Imaging. 2015 Oct;34(10):1993-2024. doi: 10.1109/TMI.2014.2377694. Epub 2014 Dec 4.
4
PORTR: Pre-operative and post-recurrence brain tumor registration.PORTR:术前和复发后脑肿瘤配准。
IEEE Trans Med Imaging. 2014 Mar;33(3):651-67. doi: 10.1109/TMI.2013.2293478.
6
Geometric metamorphosis.几何变形
Med Image Comput Comput Assist Interv. 2011;14(Pt 2):639-46. doi: 10.1007/978-3-642-23629-7_78.
9
Fast free-form deformation using graphics processing units.基于图形处理单元的快速自由变形。
Comput Methods Programs Biomed. 2010 Jun;98(3):278-84. doi: 10.1016/j.cmpb.2009.09.002. Epub 2009 Oct 8.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验