Han Xu, Yang Xiao, Aylward Stephen, Kwitt Roland, Niethammer Marc
University of North Carolina (UNC) at Chapel Hill, USA.
Kitware Inc., USA.
Proc IEEE Int Symp Biomed Imaging. 2017 Apr;2017:10-14. doi: 10.1109/ISBI.2017.7950456. Epub 2017 Jun 19.
Registration involving one or more images containing pathologies is challenging, as standard image similarity measures and spatial transforms cannot account for common changes due to pathologies. Low-rank/Sparse (LRS) decomposition removes pathologies prior to registration; however, LRS is memory-demanding and slow, which limits its use on larger data sets. Additionally, LRS blurs normal tissue regions, which may degrade registration performance. This paper proposes an efficient alternative to LRS: (1) normal tissue appearance is captured by principal component analysis (PCA) and (2) blurring is avoided by an integrated model for pathology removal and image reconstruction. Results on synthetic and BRATS 2015 data demonstrate its utility.
涉及一个或多个包含病变的图像的配准具有挑战性,因为标准的图像相似性度量和空间变换无法考虑病变引起的常见变化。低秩/稀疏(LRS)分解在配准之前去除病变;然而,LRS对内存要求高且速度慢,这限制了它在更大数据集上的使用。此外,LRS会模糊正常组织区域,这可能会降低配准性能。本文提出了一种LRS的有效替代方法:(1)通过主成分分析(PCA)捕获正常组织外观,(2)通过用于病变去除和图像重建的集成模型避免模糊。在合成数据和BRATS 2015数据上的结果证明了其效用。