Suppr超能文献

病理图像的高效配准:一种主成分分析/图像重建联合方法。

EFFICIENT REGISTRATION OF PATHOLOGICAL IMAGES: A JOINT PCA/IMAGE-RECONSTRUCTION APPROACH.

作者信息

Han Xu, Yang Xiao, Aylward Stephen, Kwitt Roland, Niethammer Marc

机构信息

University of North Carolina (UNC) at Chapel Hill, USA.

Kitware Inc., USA.

出版信息

Proc IEEE Int Symp Biomed Imaging. 2017 Apr;2017:10-14. doi: 10.1109/ISBI.2017.7950456. Epub 2017 Jun 19.

Abstract

Registration involving one or more images containing pathologies is challenging, as standard image similarity measures and spatial transforms cannot account for common changes due to pathologies. Low-rank/Sparse (LRS) decomposition removes pathologies prior to registration; however, LRS is memory-demanding and slow, which limits its use on larger data sets. Additionally, LRS blurs normal tissue regions, which may degrade registration performance. This paper proposes an efficient alternative to LRS: (1) normal tissue appearance is captured by principal component analysis (PCA) and (2) blurring is avoided by an integrated model for pathology removal and image reconstruction. Results on synthetic and BRATS 2015 data demonstrate its utility.

摘要

涉及一个或多个包含病变的图像的配准具有挑战性,因为标准的图像相似性度量和空间变换无法考虑病变引起的常见变化。低秩/稀疏(LRS)分解在配准之前去除病变;然而,LRS对内存要求高且速度慢,这限制了它在更大数据集上的使用。此外,LRS会模糊正常组织区域,这可能会降低配准性能。本文提出了一种LRS的有效替代方法:(1)通过主成分分析(PCA)捕获正常组织外观,(2)通过用于病变去除和图像重建的集成模型避免模糊。在合成数据和BRATS 2015数据上的结果证明了其效用。

相似文献

1
EFFICIENT REGISTRATION OF PATHOLOGICAL IMAGES: A JOINT PCA/IMAGE-RECONSTRUCTION APPROACH.
Proc IEEE Int Symp Biomed Imaging. 2017 Apr;2017:10-14. doi: 10.1109/ISBI.2017.7950456. Epub 2017 Jun 19.
2
Brain extraction from normal and pathological images: A joint PCA/Image-Reconstruction approach.
Neuroimage. 2018 Aug 1;176:431-445. doi: 10.1016/j.neuroimage.2018.04.073. Epub 2018 May 4.
3
Registration of Pathological Images.
Simul Synth Med Imaging. 2016 Oct;9968:97-107. doi: 10.1007/978-3-319-46630-9_10. Epub 2016 Sep 23.
4
Improving residue-residue contact prediction via low-rank and sparse decomposition of residue correlation matrix.
Biochem Biophys Res Commun. 2016 Mar 25;472(1):217-22. doi: 10.1016/j.bbrc.2016.01.188. Epub 2016 Feb 23.
5
A Deep Network for Joint Registration and Reconstruction of Images with Pathologies.
Mach Learn Med Imaging. 2020 Oct;12436:342-352. doi: 10.1007/978-3-030-59861-7_35. Epub 2020 Sep 29.
6
Low-Rank Based Image Analyses for Pathological MR Image Segmentation and Recovery.
Front Neurosci. 2019 Apr 9;13:333. doi: 10.3389/fnins.2019.00333. eCollection 2019.
7
PCA-based groupwise image registration for quantitative MRI.
Med Image Anal. 2016 Apr;29:65-78. doi: 10.1016/j.media.2015.12.004. Epub 2015 Dec 19.
8
Improved medical image fusion based on cascaded PCA and shift invariant wavelet transforms.
Int J Comput Assist Radiol Surg. 2018 Feb;13(2):229-240. doi: 10.1007/s11548-017-1692-4. Epub 2017 Dec 18.
9
Patient-Specific Registration of Pre-operative and Post-recurrence Brain Tumor MRI Scans.
Brainlesion. 2019;11383:105-114. doi: 10.1007/978-3-030-11723-8_10. Epub 2019 Jan 26.

引用本文的文献

2
Deep learning-based simultaneous registration and unsupervised non-correspondence segmentation of medical images with pathologies.
Int J Comput Assist Radiol Surg. 2022 Apr;17(4):699-710. doi: 10.1007/s11548-022-02577-4. Epub 2022 Mar 3.
3
A Deep Network for Joint Registration and Reconstruction of Images with Pathologies.
Mach Learn Med Imaging. 2020 Oct;12436:342-352. doi: 10.1007/978-3-030-59861-7_35. Epub 2020 Sep 29.
4
Registration quality filtering improves robustness of voxel-wise analyses to the choice of brain template.
Neuroimage. 2021 Feb 15;227:117657. doi: 10.1016/j.neuroimage.2020.117657. Epub 2020 Dec 15.
5
Patient-Specific Registration of Pre-operative and Post-recurrence Brain Tumor MRI Scans.
Brainlesion. 2019;11383:105-114. doi: 10.1007/978-3-030-11723-8_10. Epub 2019 Jan 26.
6
Brain extraction from normal and pathological images: A joint PCA/Image-Reconstruction approach.
Neuroimage. 2018 Aug 1;176:431-445. doi: 10.1016/j.neuroimage.2018.04.073. Epub 2018 May 4.

本文引用的文献

1
Registration of Pathological Images.
Simul Synth Med Imaging. 2016 Oct;9968:97-107. doi: 10.1007/978-3-319-46630-9_10. Epub 2016 Sep 23.
2
Low-Rank Atlas Image Analyses in the Presence of Pathologies.
IEEE Trans Med Imaging. 2015 Dec;34(12):2583-91. doi: 10.1109/TMI.2015.2448556. Epub 2015 Jun 22.
3
The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS).
IEEE Trans Med Imaging. 2015 Oct;34(10):1993-2024. doi: 10.1109/TMI.2014.2377694. Epub 2014 Dec 4.
4
PORTR: Pre-operative and post-recurrence brain tumor registration.
IEEE Trans Med Imaging. 2014 Mar;33(3):651-67. doi: 10.1109/TMI.2013.2293478.
5
Neuroimaging of structural pathology and connectomics in traumatic brain injury: Toward personalized outcome prediction.
Neuroimage Clin. 2012 Aug 24;1(1):1-17. doi: 10.1016/j.nicl.2012.08.002. eCollection 2012.
6
Geometric metamorphosis.
Med Image Comput Comput Assist Interv. 2011;14(Pt 2):639-46. doi: 10.1007/978-3-642-23629-7_78.
7
Non-rigid registration with missing correspondences in preoperative and postresection brain images.
Med Image Comput Comput Assist Interv. 2010;13(Pt 1):367-74. doi: 10.1007/978-3-642-15705-9_45.
8
Open access series of imaging studies: longitudinal MRI data in nondemented and demented older adults.
J Cogn Neurosci. 2010 Dec;22(12):2677-84. doi: 10.1162/jocn.2009.21407.
9
Fast free-form deformation using graphics processing units.
Comput Methods Programs Biomed. 2010 Jun;98(3):278-84. doi: 10.1016/j.cmpb.2009.09.002. Epub 2009 Oct 8.
10
Spatial normalization of brain images with focal lesions using cost function masking.
Neuroimage. 2001 Aug;14(2):486-500. doi: 10.1006/nimg.2001.0845.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验