Suppr超能文献

通过溶剂改变蛋白质动力学来调节酶活性

Modulating Enzyme Activity by Altering Protein Dynamics with Solvent.

作者信息

Duff Michael R, Borreguero Jose M, Cuneo Matthew J, Ramanathan Arvind, He Junhong, Kamath Ganesh, Chennubhotla S Chakra, Meilleur Flora, Howell Elizabeth E, Herwig Kenneth W, Myles Dean A A, Agarwal Pratul K

机构信息

Biochemistry & Cellular and Molecular Biology Department , University of Tennessee , Knoxville , Tennessee , United States.

Neutron Data Analysis and Visualization Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee , United States.

出版信息

Biochemistry. 2018 Jul 24;57(29):4263-4275. doi: 10.1021/acs.biochem.8b00424. Epub 2018 Jul 6.

Abstract

Optimal enzyme activity depends on a number of factors, including structure and dynamics. The role of enzyme structure is well recognized; however, the linkage between protein dynamics and enzyme activity has given rise to a contentious debate. We have developed an approach that uses an aqueous mixture of organic solvent to control the functionally relevant enzyme dynamics (without changing the structure), which in turn modulates the enzyme activity. Using this approach, we predicted that the hydride transfer reaction catalyzed by the enzyme dihydrofolate reductase (DHFR) from Escherichia coli in aqueous mixtures of isopropanol (IPA) with water will decrease by ∼3 fold at 20% (v/v) IPA concentration. Stopped-flow kinetic measurements find that the pH-independent k rate decreases by 2.2 fold. X-ray crystallographic enzyme structures show no noticeable differences, while computational studies indicate that the transition state and electrostatic effects were identical for water and mixed solvent conditions; quasi-elastic neutron scattering studies show that the dynamical enzyme motions are suppressed. Our approach provides a unique avenue to modulating enzyme activity through changes in enzyme dynamics. Further it provides vital insights that show the altered motions of DHFR cause significant changes in the enzyme's ability to access its functionally relevant conformational substates, explaining the decreased k rate. This approach has important implications for obtaining fundamental insights into the role of rate-limiting dynamics in catalysis and as well as for enzyme engineering.

摘要

最佳酶活性取决于多种因素,包括结构和动力学。酶结构的作用已得到充分认识;然而,蛋白质动力学与酶活性之间的联系引发了一场激烈的争论。我们开发了一种方法,利用有机溶剂的水性混合物来控制功能相关的酶动力学(不改变结构),进而调节酶活性。使用这种方法,我们预测,在异丙醇(IPA)与水的水性混合物中,大肠杆菌二氢叶酸还原酶(DHFR)催化的氢化物转移反应在IPA浓度为20%(v/v)时将降低约3倍。停流动力学测量发现,与pH无关的k速率降低了2.2倍。X射线晶体学酶结构没有明显差异,而计算研究表明,水和混合溶剂条件下的过渡态和静电效应是相同的;准弹性中子散射研究表明,酶的动态运动受到抑制。我们的方法为通过改变酶动力学来调节酶活性提供了一条独特的途径。此外,它提供了重要的见解,表明DHFR运动的改变导致酶获取其功能相关构象亚态的能力发生显著变化,解释了k速率的降低。这种方法对于深入了解限速动力学在催化中的作用以及酶工程具有重要意义。

相似文献

1
Modulating Enzyme Activity by Altering Protein Dynamics with Solvent.
Biochemistry. 2018 Jul 24;57(29):4263-4275. doi: 10.1021/acs.biochem.8b00424. Epub 2018 Jul 6.
2
Solvent effects on catalysis by Escherichia coli dihydrofolate reductase.
J Am Chem Soc. 2010 Jan 27;132(3):1137-43. doi: 10.1021/ja909353c.
3
Hydride Transfer in DHFR by Transition Path Sampling, Kinetic Isotope Effects, and Heavy Enzyme Studies.
Biochemistry. 2016 Jan 12;55(1):157-66. doi: 10.1021/acs.biochem.5b01241. Epub 2015 Dec 23.
4
Different dynamical effects in mesophilic and hyperthermophilic dihydrofolate reductases.
J Am Chem Soc. 2014 May 14;136(19):6862-5. doi: 10.1021/ja502673h. Epub 2014 May 5.
5
Structure, dynamics, and catalytic function of dihydrofolate reductase.
Annu Rev Biophys Biomol Struct. 2004;33:119-40. doi: 10.1146/annurev.biophys.33.110502.133613.
8
Dynamics of immobilized and native Escherichia coli dihydrofolate reductase by quasielastic neutron scattering.
Biophys J. 2006 Feb 1;90(3):1090-7. doi: 10.1529/biophysj.105.062182. Epub 2005 Oct 28.
9
Incorporating dynamics in E. coli dihydrofolate reductase enhances structure-based drug discovery.
J Chem Inf Model. 2007 Nov-Dec;47(6):2358-65. doi: 10.1021/ci700167n. Epub 2007 Sep 18.
10
Comparison of coupled motions in Escherichia coli and Bacillus subtilis dihydrofolate reductase.
J Phys Chem B. 2006 May 25;110(20):10130-8. doi: 10.1021/jp0605956.

引用本文的文献

1
Biocomposites of Enzymes and Covalent Organic Frameworks: A Novel Family of Heterogenous Biocatalysis.
Chem Bio Eng. 2025 Apr 16;2(7):380-408. doi: 10.1021/cbe.5c00013. eCollection 2025 Jul 24.
2
A Computational Perspective to Intermolecular Interactions and the Role of the Solvent on Regulating Protein Properties.
Chem Rev. 2025 Aug 13;125(15):7023-7056. doi: 10.1021/acs.chemrev.4c00807. Epub 2025 Jul 28.
4
Modelling protein-protein interactions for the design of vaccine chimeric antigens with protective epitopes.
PLoS One. 2025 Feb 10;20(2):e0318439. doi: 10.1371/journal.pone.0318439. eCollection 2025.
6
Altered Nucleotide Insertion Mechanisms of Disease-Associated TERT Variants.
Genes (Basel). 2023 Jan 21;14(2):281. doi: 10.3390/genes14020281.
7
Capture of activated dioxygen intermediates at the copper-active site of a lytic polysaccharide monooxygenase.
Chem Sci. 2022 Nov 2;13(45):13303-13320. doi: 10.1039/d2sc05031e. eCollection 2022 Nov 23.
8
Mechanism of nucleotide discrimination by the translesion synthesis polymerase Rev1.
Nat Commun. 2022 May 24;13(1):2876. doi: 10.1038/s41467-022-30577-0.
9
Altered APE1 activity on abasic ribonucleotides is mediated by changes in the nucleoside sugar pucker.
Comput Struct Biotechnol J. 2021 May 25;19:3293-3302. doi: 10.1016/j.csbj.2021.05.035. eCollection 2021.
10
Modulating Enzyme Function Dynamic Allostery within Biliverdin Reductase B.
Front Mol Biosci. 2021 May 20;8:691208. doi: 10.3389/fmolb.2021.691208. eCollection 2021.

本文引用的文献

1
The role of the Met loop in the hydride transfer in dihydrofolate reductase.
J Biol Chem. 2017 Aug 25;292(34):14229-14239. doi: 10.1074/jbc.M117.777136. Epub 2017 Jun 15.
2
3
Ligand Binding Enhances Millisecond Conformational Exchange in Xylanase B2 from Streptomyces lividans.
Biochemistry. 2016 Aug 2;55(30):4184-96. doi: 10.1021/acs.biochem.6b00130. Epub 2016 Jul 21.
4
Moving Beyond Active-Site Detection: MixMD Applied to Allosteric Systems.
J Phys Chem B. 2016 Aug 25;120(33):8685-95. doi: 10.1021/acs.jpcb.6b03515. Epub 2016 Jun 17.
5
Transition States and transition state analogue interactions with enzymes.
Acc Chem Res. 2015 Apr 21;48(4):1032-9. doi: 10.1021/acs.accounts.5b00002. Epub 2015 Apr 7.
6
Quantitative analysis of purine nucleotides indicates that purinosomes increase de novo purine biosynthesis.
J Biol Chem. 2015 Mar 13;290(11):6705-13. doi: 10.1074/jbc.M114.628701. Epub 2015 Jan 20.
7
Role of dynamics in enzyme catalysis: substantial versus semantic controversies.
Acc Chem Res. 2015 Feb 17;48(2):466-73. doi: 10.1021/ar500322s. Epub 2014 Dec 24.
8
The dynamical nature of enzymatic catalysis.
Acc Chem Res. 2015 Feb 17;48(2):407-13. doi: 10.1021/ar5002928. Epub 2014 Dec 24.
9
Escherichia coli dihydrofolate reductase catalyzed proton and hydride transfers: temporal order and the roles of Asp27 and Tyr100.
Proc Natl Acad Sci U S A. 2014 Dec 23;111(51):18231-6. doi: 10.1073/pnas.1415940111. Epub 2014 Dec 1.
10
Toward resolving the catalytic mechanism of dihydrofolate reductase using neutron and ultrahigh-resolution X-ray crystallography.
Proc Natl Acad Sci U S A. 2014 Dec 23;111(51):18225-30. doi: 10.1073/pnas.1415856111. Epub 2014 Dec 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验