Suppr超能文献

通过酶反应选择杂合超分子肽组装体的二级结构。

Selection of Secondary Structures of Heterotypic Supramolecular Peptide Assemblies by an Enzymatic Reaction.

机构信息

Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02454, USA.

出版信息

Angew Chem Int Ed Engl. 2018 Sep 3;57(36):11716-11721. doi: 10.1002/anie.201806992. Epub 2018 Aug 6.

Abstract

In a model study to investigate the consequence of reactions of intrinsically disordered regions (IDRs) of proteins in the context of the formation of highly ordered structures, we found that enzymatic reactions control the secondary structures of peptides during assembly. Specifically, phosphorylation of an α-helix-dominant peptide results in mostly disordered conformations, which become β-strand-dominant after enzymatic dephosphorylation to regenerate the peptide. In the presence of another peptide largely with a β-strand conformation, direct coassembly of the peptides results in amorphous aggregates consisting of α-helix and β-strand peptides, but the enzymatically generated peptide coassemblies (from the phosphopeptide) mainly adopt a β-strand conformation and form ordered structures (e.g., nanofibers). These results indicate that enzymatic dephosphorylation instructs conformationally flexible peptides to adopt thermodynamically favorable conformations in homotypic or heterotypic supramolecular assemblies.

摘要

在一项研究蛋白质无规则区域(IDR)反应后果的模型研究中,我们发现酶反应控制了多肽在组装过程中的二级结构。具体来说,磷酸化一个富含α-螺旋的肽导致其主要呈现无规则构象,而在酶去磷酸化后重新生成该肽时则变成富含β-折叠的构象。当另一个主要呈β-折叠构象的多肽存在时,这些多肽直接共组装会形成无定形聚集体,包含α-螺旋和β-折叠多肽,但酶生成的多肽共组装体(来自磷酸化肽)主要采用β-折叠构象并形成有序结构(例如纳米纤维)。这些结果表明,酶去磷酸化指导构象柔性的多肽在同型或异型超分子组装中采用热力学有利的构象。

相似文献

1
Selection of Secondary Structures of Heterotypic Supramolecular Peptide Assemblies by an Enzymatic Reaction.
Angew Chem Int Ed Engl. 2018 Sep 3;57(36):11716-11721. doi: 10.1002/anie.201806992. Epub 2018 Aug 6.
2
Enzymatic Dissolution of Biocomposite Solids Consisting of Phosphopeptides to Form Supramolecular Hydrogels.
Chemistry. 2015 Dec 7;21(50):18047-51. doi: 10.1002/chem.201504087. Epub 2015 Oct 29.
3
Peptide Self-assembly: From Ordered to Disordered.
Acc Chem Res. 2024 Feb 6;57(3):289-301. doi: 10.1021/acs.accounts.3c00592. Epub 2024 Jan 17.
4
Aggregation of Chameleon Peptides: Implications of α-Helicity in Fibril Formation.
J Phys Chem B. 2016 Jul 7;120(26):5874-83. doi: 10.1021/acs.jpcb.6b00830. Epub 2016 Apr 1.
5
Chimeric 14-3-3 proteins for unraveling interactions with intrinsically disordered partners.
Sci Rep. 2017 Sep 20;7(1):12014. doi: 10.1038/s41598-017-12214-9.
6
Phosphorylation-Induced Mechanical Regulation of Intrinsically Disordered Neurofilament Proteins.
Biophys J. 2017 Mar 14;112(5):892-900. doi: 10.1016/j.bpj.2016.12.050.
7
Conformational ordering of intrinsically disordered peptides for targeting translation initiation.
Biochim Biophys Acta Gen Subj. 2021 Jan;1865(1):129775. doi: 10.1016/j.bbagen.2020.129775. Epub 2020 Oct 27.
8
Enzymatic Control of the Conformational Landscape of Self-Assembling Peptides.
Angew Chem Int Ed Engl. 2018 Aug 27;57(35):11188-11192. doi: 10.1002/anie.201803983. Epub 2018 Jul 25.
9
Supramolecular Assembly of Peptide Amphiphiles.
Acc Chem Res. 2017 Oct 17;50(10):2440-2448. doi: 10.1021/acs.accounts.7b00297. Epub 2017 Sep 6.
10
β-hairpin-mediated formation of structurally distinct multimers of neurotoxic prion peptides.
PLoS One. 2014 Jan 31;9(1):e87354. doi: 10.1371/journal.pone.0087354. eCollection 2014.

引用本文的文献

2
Super-Resolution Microscopy as a Versatile Tool in Probing Molecular Assembly.
Int J Mol Sci. 2024 Oct 26;25(21):11497. doi: 10.3390/ijms252111497.
3
Hierarchical Assembly of Intrinsically Disordered Short Peptides.
Chem. 2023 Sep 14;9(9):2530-2546. doi: 10.1016/j.chempr.2023.04.023. Epub 2023 May 16.
5
An Exploration of Multiple Component Peptide Assemblies by Enzyme-Instructed Self-Assembly.
ChemSystemsChem. 2023 May;5(3). doi: 10.1002/syst.202200041. Epub 2023 Jan 18.
6
Phosphobisaromatic motifs enable rapid enzymatic self-assembly and hydrogelation of short peptides.
Soft Matter. 2021 Oct 6;17(38):8590-8594. doi: 10.1039/d1sm01221e.
7
Heterotypic Supramolecular Hydrogels Formed by Noncovalent Interactions in Inflammasomes.
Molecules. 2020 Dec 26;26(1):77. doi: 10.3390/molecules26010077.
8
Sequence-Dependent Nanofiber Structures of Phenylalanine and Isoleucine Tripeptides.
Int J Mol Sci. 2020 Nov 10;21(22):8431. doi: 10.3390/ijms21228431.
9
Coassembly-Induced Transformation of Dipeptide Amyloid-Like Structures into Stimuli-Responsive Supramolecular Materials.
ACS Nano. 2020 Jun 23;14(6):7181-7190. doi: 10.1021/acsnano.0c02138. Epub 2020 May 22.
10
Enzymatic Noncovalent Synthesis of Supramolecular Soft Matter for Biomedical Applications.
Matter. 2019 Nov 6;1(5):1127-1147. doi: 10.1016/j.matt.2019.09.015.

本文引用的文献

1
Switchable Hydrolase Based on Reversible Formation of Supramolecular Catalytic Site Using a Self-Assembling Peptide.
Angew Chem Int Ed Engl. 2017 Nov 13;56(46):14511-14515. doi: 10.1002/anie.201708036. Epub 2017 Oct 11.
2
Opening a Can of Worm(-like Micelle)s: The Effect of Temperature of Solutions of Functionalized Dipeptides.
Angew Chem Int Ed Engl. 2017 Aug 21;56(35):10467-10470. doi: 10.1002/anie.201705604. Epub 2017 Jul 28.
3
Programmable Assembly of Peptide Amphiphile via Noncovalent-to-Covalent Bond Conversion.
J Am Chem Soc. 2017 Jul 5;139(26):8995-9000. doi: 10.1021/jacs.7b03878. Epub 2017 Jun 22.
4
Polymeric peptide pigments with sequence-encoded properties.
Science. 2017 Jun 9;356(6342):1064-1068. doi: 10.1126/science.aal5005.
5
Co-assembly of Peptide Amphiphiles and Lipids into Supramolecular Nanostructures Driven by Anion-π Interactions.
J Am Chem Soc. 2017 Jun 14;139(23):7823-7830. doi: 10.1021/jacs.7b02058. Epub 2017 Jun 1.
6
Polymer-Peptide Conjugates Disassemble Amyloid β Fibrils in a Molecular-Weight Dependent Manner.
J Am Chem Soc. 2017 Mar 29;139(12):4298-4301. doi: 10.1021/jacs.7b00289. Epub 2017 Mar 16.
7
Aromatic-Aromatic Interactions Enable α-Helix to β-Sheet Transition of Peptides to Form Supramolecular Hydrogels.
J Am Chem Soc. 2017 Jan 11;139(1):71-74. doi: 10.1021/jacs.6b11512. Epub 2016 Dec 22.
8
Sequence Determinants of the Conformational Properties of an Intrinsically Disordered Protein Prior to and upon Multisite Phosphorylation.
J Am Chem Soc. 2016 Nov 30;138(47):15323-15335. doi: 10.1021/jacs.6b10272. Epub 2016 Nov 17.
9
Tuning Cellular Uptake of Molecular Probes by Rational Design of Their Assembly into Supramolecular Nanoprobes.
J Am Chem Soc. 2016 Mar 16;138(10):3533-40. doi: 10.1021/jacs.6b00073. Epub 2016 Mar 3.
10
Stacking Interactions Drive Selective Self-Assembly and Self-Sorting of Pyrene-Based M(II)4L6 Architectures.
J Am Chem Soc. 2015 Nov 18;137(45):14502-12. doi: 10.1021/jacs.5b09920. Epub 2015 Nov 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验