IEEE Trans Med Imaging. 2018 Oct;37(10):2278-2289. doi: 10.1109/TMI.2018.2841910. Epub 2018 May 29.
Corneal endothelium images obtained by in vivo specular microscopy provide important information to assess the health status of the cornea. Estimation of clinical parameters, such as cell density, polymegethism, and pleomorphism, requires accurate cell segmentation. State-of-the-art techniques to automatically segment the endothelium are error-prone when applied to images with low contrast and/or large variation in cell size. Here, we propose an automatic method to segment the endothelium. Starting with an oversegmented image comprised of superpixels obtained from a stochastic watershed segmentation, the proposed method uses intensity and shape information of the superpixels to identify and merge those that constitute a cell, using support vector machines. We evaluated the automatic segmentation on a data set of in vivo specular microscopy images (Topcon SP-1P), obtaining 95.8% correctly merged cells and 2.0% undersegmented cells. We also evaluated the parameter estimation against the results of the vendor's built-in software, obtaining a statistically significant better precision in all parameters and a similar or better accuracy. The parameter estimation was also evaluated on three other data sets from different imaging modalities (confocal microscopy, phase-contrast microscopy, and fluorescence confocal microscopy) and tissue types (ex vivo corneal endothelium and retinal pigment epithelium). In comparison with the estimates of the data sets' authors, we achieved statistically significant better accuracy and precision in all parameters except pleomorphism, where a similar accuracy and precision were obtained.
通过活体共聚焦显微镜获得的角膜内皮图像提供了评估角膜健康状况的重要信息。估计细胞密度、多核性和多形性等临床参数需要进行准确的细胞分割。目前,应用于对比度低和/或细胞大小变化大的图像的自动分割技术容易出错。在这里,我们提出了一种自动分割内皮的方法。该方法从随机分水岭分割得到的超像素过分割图像开始,使用支持向量机根据超像素的强度和形状信息来识别和合并构成细胞的超像素。我们在活体共聚焦显微镜图像(Topcon SP-1P)数据集上评估了自动分割,得到了 95.8%的正确合并细胞和 2.0%的欠分割细胞。我们还将参数估计与供应商内置软件的结果进行了比较,在所有参数上都获得了统计学上显著更好的精度,并且准确性相似或更好。我们还在来自不同成像模式(共聚焦显微镜、相差显微镜和荧光共聚焦显微镜)和组织类型(离体角膜内皮和视网膜色素上皮)的三个其他数据集上评估了参数估计。与数据集作者的估计相比,除了多形性外,我们在所有参数上都获得了统计学上显著更好的准确性和精度,在多形性方面,我们获得了相似的准确性和精度。