Suppr超能文献

最近的光学相干断层扫描图像视网膜液分割的深度学习架构。

Recent Advanced Deep Learning Architectures for Retinal Fluid Segmentation on Optical Coherence Tomography Images.

机构信息

School of Informatics, Xiamen University, 422 Si Ming South Road, Xiamen 361005, China.

出版信息

Sensors (Basel). 2022 Apr 15;22(8):3055. doi: 10.3390/s22083055.

Abstract

With non-invasive and high-resolution properties, optical coherence tomography (OCT) has been widely used as a retinal imaging modality for the effective diagnosis of ophthalmic diseases. The retinal fluid is often segmented by medical experts as a pivotal biomarker to assist in the clinical diagnosis of age-related macular diseases, diabetic macular edema, and retinal vein occlusion. In recent years, the advanced machine learning methods, such as deep learning paradigms, have attracted more and more attention from academia in the retinal fluid segmentation applications. The automatic retinal fluid segmentation based on deep learning can improve the semantic segmentation accuracy and efficiency of macular change analysis, which has potential clinical implications for ophthalmic pathology detection. This article summarizes several different deep learning paradigms reported in the up-to-date literature for the retinal fluid segmentation in OCT images. The deep learning architectures include the backbone of convolutional neural network (CNN), fully convolutional network (FCN), U-shape network (U-Net), and the other hybrid computational methods. The article also provides a survey on the prevailing OCT image datasets used in recent retinal segmentation investigations. The future perspectives and some potential retinal segmentation directions are discussed in the concluding context.

摘要

光学相干断层扫描(OCT)具有非侵入性和高分辨率的特性,已被广泛用作视网膜成像方式,可有效诊断眼科疾病。视网膜液通常由医学专家分割为关键生物标志物,以辅助年龄相关性黄斑病变、糖尿病性黄斑水肿和视网膜静脉阻塞的临床诊断。近年来,深度学习范例等先进的机器学习方法在视网膜液分割应用中引起了学术界越来越多的关注。基于深度学习的自动视网膜液分割可以提高黄斑变化分析的语义分割准确性和效率,这对眼科病理学检测具有潜在的临床意义。本文总结了最新文献中报道的几种不同的深度学习范例,用于 OCT 图像中的视网膜液分割。深度学习架构包括卷积神经网络(CNN)、全卷积网络(FCN)、U 形网络(U-Net)和其他混合计算方法。本文还介绍了当前用于视网膜分割研究的流行 OCT 图像数据集。在结论部分讨论了未来的展望和一些潜在的视网膜分割方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f4c0/9029682/8691067116e2/sensors-22-03055-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验