Département de Phytologie, Faculté des Sciences de l'Agriculture et de l'Alimentation (FSAA), Université Laval, Québec, QC, G1V 0A6, Canada.
Agriculture and Agri-Food Canada, 101 Route 100, Morden, MB, R6M 1Y5, Canada.
New Phytol. 2019 Jan;221(1):67-85. doi: 10.1111/nph.15343. Epub 2018 Jul 14.
Contents Summary 67 I. Introduction 68 II. Silicon transport in plants: to absorb or not to absorb 69 III. The role of silicon in plants: not just a matter of semantics 71 IV. Silicon and biotic stress: beyond mechanical barriers and defense priming 76 V. Silicon and abiotic stress: a proliferation of proposed mechanisms 78 VI. The apoplastic obstruction hypothesis: a working model 79 VII. Perspectives and conclusions 80 Acknowledgements 81 References 81 SUMMARY: Silicon (Si) is not classified as an essential plant nutrient, and yet numerous reports have shown its beneficial effects in a variety of species and environmental circumstances. This has created much confusion in the scientific community with respect to its biological roles. Here, we link molecular and phenotypic data to better classify Si transport, and critically summarize the current state of understanding of the roles of Si in higher plants. We argue that much of the empirical evidence, in particular that derived from recent functional genomics, is at odds with many of the mechanistic assertions surrounding Si's role. In essence, these data do not support reports that Si affects a wide range of molecular-genetic, biochemical and physiological processes. A major reinterpretation of Si's role is therefore needed, which is critical to guide future studies and inform agricultural practice. We propose a working model, which we term the 'apoplastic obstruction hypothesis', which attempts to unify the various observations on Si's beneficial influences on plant growth and yield. This model argues for a fundamental role of Si as an extracellular prophylactic agent against biotic and abiotic stresses (as opposed to an active cellular agent), with important cascading effects on plant form and function.
内容摘要 67 I. 引言 68 II. 植物中的硅运输:吸收还是不吸收 69 III. 硅在植物中的作用:不仅仅是语义问题 71 IV. 硅与生物胁迫:超越机械障碍和防御启动 76 V. 硅与非生物胁迫:提出的机制层出不穷 78 VI. 质外体阻塞假说:一个工作模型 79 VII. 观点和结论 80 致谢 81 参考文献 81 摘要:硅(Si)不属于必需的植物营养元素,但大量报道表明它对多种物种和环境条件具有有益作用。这在科学界引起了很大的混乱,因为它的生物学作用存在争议。在这里,我们将分子和表型数据联系起来,以更好地分类 Si 运输,并批判性地总结了目前对高等植物中 Si 作用的理解。我们认为,大量的经验证据,特别是来自最近的功能基因组学的证据,与围绕 Si 作用的许多机制论点不一致。从本质上讲,这些数据不支持 Si 影响广泛的分子遗传、生化和生理过程的报告。因此,需要对 Si 的作用进行重大重新解释,这对于指导未来的研究和为农业实践提供信息至关重要。我们提出了一个工作模型,我们称之为“质外体阻塞假说”,试图统一关于 Si 对植物生长和产量有益影响的各种观察结果。该模型认为,Si 作为一种细胞外的预防性物质,对生物和非生物胁迫具有重要作用(而不是一种主动的细胞内物质),对植物形态和功能具有重要的级联效应。