Suppr超能文献

分析 mRNA 结构动力学可识别胚胎基因调控程序。

Analyses of mRNA structure dynamics identify embryonic gene regulatory programs.

机构信息

Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.

Computer Science and Electrical Engineering Department, Massachusetts Institute of Technology, Cambridge, MA, USA.

出版信息

Nat Struct Mol Biol. 2018 Aug;25(8):677-686. doi: 10.1038/s41594-018-0091-z. Epub 2018 Jul 30.

Abstract

RNA folding plays a crucial role in RNA function. However, knowledge of the global structure of the transcriptome is limited to cellular systems at steady state, thus hindering the understanding of RNA structure dynamics during biological transitions and how it influences gene function. Here, we characterized mRNA structure dynamics during zebrafish development. We observed that on a global level, translation guides structure rather than structure guiding translation. We detected a decrease in structure in translated regions and identified the ribosome as a major remodeler of RNA structure in vivo. In contrast, we found that 3' untranslated regions (UTRs) form highly folded structures in vivo, which can affect gene expression by modulating microRNA activity. Furthermore, dynamic 3'-UTR structures contain RNA-decay elements, such as the regulatory elements in nanog and ccna1, two genes encoding key maternal factors orchestrating the maternal-to-zygotic transition. These results reveal a central role of RNA structure dynamics in gene regulatory programs.

摘要

RNA 折叠在 RNA 功能中起着至关重要的作用。然而,对转录组的全局结构的了解仅限于稳态细胞系统,从而阻碍了对生物转变过程中 RNA 结构动力学及其如何影响基因功能的理解。在这里,我们描述了斑马鱼发育过程中 mRNA 结构动力学。我们观察到,在全局水平上,翻译指导结构而不是结构指导翻译。我们检测到翻译区域结构的减少,并确定核糖体是体内 RNA 结构的主要重塑剂。相比之下,我们发现 3'非翻译区 (UTR) 在体内形成高度折叠的结构,通过调节 microRNA 活性来影响基因表达。此外,动态 3'-UTR 结构包含 RNA 衰变元件,如调控元件在 nanog 和 ccna1 中,这两个基因编码关键的母体因子,协调母体到合子的转变。这些结果揭示了 RNA 结构动力学在基因调控程序中的核心作用。

相似文献

1
Analyses of mRNA structure dynamics identify embryonic gene regulatory programs.
Nat Struct Mol Biol. 2018 Aug;25(8):677-686. doi: 10.1038/s41594-018-0091-z. Epub 2018 Jul 30.
2
Deciphering the role of RNA structure in translation efficiency.
BMC Bioinformatics. 2022 Dec 23;23(Suppl 3):559. doi: 10.1186/s12859-022-05037-7.
3
Codon Usage and 3' UTR Length Determine Maternal mRNA Stability in Zebrafish.
Mol Cell. 2016 Mar 17;61(6):874-85. doi: 10.1016/j.molcel.2016.02.027.
5
RNA secondary structure profiling in zebrafish reveals unique regulatory features.
BMC Genomics. 2018 Feb 15;19(1):147. doi: 10.1186/s12864-018-4497-0.
8
Ribosome profiling shows that miR-430 reduces translation before causing mRNA decay in zebrafish.
Science. 2012 Apr 13;336(6078):233-7. doi: 10.1126/science.1215704. Epub 2012 Mar 15.
9
Crosstalk between codon optimality and cis-regulatory elements dictates mRNA stability.
Genome Biol. 2021 Jan 5;22(1):14. doi: 10.1186/s13059-020-02251-5.
10
Translational control by secondary-structure formation in mRNA in a eukaryotic system.
Nucleosides Nucleotides Nucleic Acids. 2020;39(1-3):195-203. doi: 10.1080/15257770.2019.1671593. Epub 2019 Sep 30.

引用本文的文献

1
Unraveling the Role of Topoisomerase 3β (TOP3B) in mRNA Translation and Human Disease.
Wiley Interdiscip Rev RNA. 2025 Jul-Aug;16(4):e70020. doi: 10.1002/wrna.70020.
3
Decoding the interactions and functions of non-coding RNA with artificial intelligence.
Nat Rev Mol Cell Biol. 2025 Jun 19. doi: 10.1038/s41580-025-00857-w.
7
Rapid folding of nascent RNA regulates eukaryotic RNA biogenesis.
Mol Cell. 2025 Apr 17;85(8):1561-1574.e5. doi: 10.1016/j.molcel.2025.02.025. Epub 2025 Mar 25.
8
Heterogeneous and multiple conformational transition pathways between pseudoknots of the SARS-CoV-2 frameshift element.
Proc Natl Acad Sci U S A. 2025 Jan 28;122(4):e2417479122. doi: 10.1073/pnas.2417479122. Epub 2025 Jan 24.
9
The regulatory landscape of 5' UTRs in translational control during zebrafish embryogenesis.
Dev Cell. 2025 May 19;60(10):1498-1515.e8. doi: 10.1016/j.devcel.2024.12.038. Epub 2025 Jan 15.

本文引用的文献

1
Widespread Influence of 3'-End Structures on Mammalian mRNA Processing and Stability.
Cell. 2017 May 18;169(5):905-917.e11. doi: 10.1016/j.cell.2017.04.036.
2
A Global View of RNA-Protein Interactions Identifies Post-transcriptional Regulators of Root Hair Cell Fate.
Dev Cell. 2017 Apr 24;41(2):204-220.e5. doi: 10.1016/j.devcel.2017.03.018.
4
RESA identifies mRNA-regulatory sequences at high resolution.
Nat Methods. 2017 Feb;14(2):201-207. doi: 10.1038/nmeth.4121. Epub 2016 Dec 26.
5
RNA G-quadruplexes are globally unfolded in eukaryotic cells and depleted in bacteria.
Science. 2016 Sep 23;353(6306). doi: 10.1126/science.aaf5371.
6
mTAIL-seq reveals dynamic poly(A) tail regulation in oocyte-to-embryo development.
Genes Dev. 2016 Jul 15;30(14):1671-82. doi: 10.1101/gad.284802.116. Epub 2016 Jul 21.
7
Codon identity regulates mRNA stability and translation efficiency during the maternal-to-zygotic transition.
EMBO J. 2016 Oct 4;35(19):2087-2103. doi: 10.15252/embj.201694699. Epub 2016 Jul 19.
8
RNA Duplex Map in Living Cells Reveals Higher-Order Transcriptome Structure.
Cell. 2016 May 19;165(5):1267-1279. doi: 10.1016/j.cell.2016.04.028. Epub 2016 May 12.
9
Upstream ORFs are prevalent translational repressors in vertebrates.
EMBO J. 2016 Apr 1;35(7):706-23. doi: 10.15252/embj.201592759. Epub 2016 Feb 19.
10
Comparative genetics. Systematic discovery of cap-independent translation sequences in human and viral genomes.
Science. 2016 Jan 15;351(6270). doi: 10.1126/science.aad4939. Epub 2016 Jan 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验