Division of Humanities and Social Sciences, Pasadena, CA 91125, USA
Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
Philos Trans R Soc Lond B Biol Sci. 2018 Sep 26;373(1756). doi: 10.1098/rstb.2017.0284.
Individual people differ in their ability to reason, solve problems, think abstractly, plan and learn. A reliable measure of this general ability, also known as intelligence, can be derived from scores across a diverse set of cognitive tasks. There is great interest in understanding the neural underpinnings of individual differences in intelligence, because it is the single best predictor of long-term life success. The most replicated neural correlate of human intelligence to date is total brain volume; however, this coarse morphometric correlate says little about function. Here, we ask whether measurements of the activity of the resting brain (resting-state fMRI) might also carry information about intelligence. We used the final release of the Young Adult Human Connectome Project ( = 884 subjects after exclusions), providing a full hour of resting-state fMRI per subject; controlled for gender, age and brain volume; and derived a reliable estimate of general intelligence from scores on multiple cognitive tasks. Using a cross-validated predictive framework, we predicted 20% of the variance in general intelligence in the sampled population from their resting-state connectivity matrices. Interestingly, no single anatomical structure or network was responsible or necessary for this prediction, which instead relied on redundant information distributed across the brain.This article is part of the theme issue 'Causes and consequences of individual differences in cognitive abilities'.
个体在推理、解决问题、抽象思维、规划和学习方面的能力存在差异。这种一般能力的可靠衡量标准,也称为智力,可以通过在一系列不同认知任务中的得分来得出。人们对理解智力个体差异的神经基础非常感兴趣,因为它是长期生活成功的最佳预测指标。迄今为止,与人类智力最相关的神经相关性是大脑总容量;然而,这种粗略的形态计量相关性几乎没有说明功能。在这里,我们想问一下静息态大脑活动(静息态 fMRI)的测量是否也能提供有关智力的信息。我们使用最终发布的年轻成人人类连接组计划(= 884 名受试者,排除后),为每个受试者提供了整整一个小时的静息态 fMRI;控制性别、年龄和大脑体积;并从多项认知任务的分数中得出了可靠的一般智力估计值。使用交叉验证的预测框架,我们根据静息状态连接矩阵预测了抽样人群中 20%的一般智力差异。有趣的是,没有单个解剖结构或网络对此预测负责或必要,而是依赖于大脑中分布的冗余信息。本文是主题为“认知能力个体差异的原因和后果”的一部分。