European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
Roche Diagnostics, Waiblingen, Germany.
Nature. 2018 Sep;561(7723):411-415. doi: 10.1038/s41586-018-0518-z. Epub 2018 Sep 10.
Essential biological functions, such as mitosis, require tight coordination of hundreds of proteins in space and time. Localization, the timing of interactions and changes in cellular structure are all crucial to ensure the correct assembly, function and regulation of protein complexes. Imaging of live cells can reveal protein distributions and dynamics but experimental and theoretical challenges have prevented the collection of quantitative data, which are necessary for the formulation of a model of mitosis that comprehensively integrates information and enables the analysis of the dynamic interactions between the molecular parts of the mitotic machinery within changing cellular boundaries. Here we generate a canonical model of the morphological changes during the mitotic progression of human cells on the basis of four-dimensional image data. We use this model to integrate dynamic three-dimensional concentration data of many fluorescently knocked-in mitotic proteins, imaged by fluorescence correlation spectroscopy-calibrated microscopy. The approach taken here to generate a dynamic protein atlas of human cell division is generic; it can be applied to systematically map and mine dynamic protein localization networks that drive cell division in different cell types, and can be conceptually transferred to other cellular functions.
基本的生物功能,如有丝分裂,需要在空间和时间上数百种蛋白质的紧密协调。定位、相互作用的时间和细胞结构的变化对于确保蛋白质复合物的正确组装、功能和调节都是至关重要的。活细胞的成像可以揭示蛋白质的分布和动态,但实验和理论上的挑战阻止了定量数据的收集,这些数据对于制定一个全面整合信息的有丝分裂模型是必要的,该模型能够分析在不断变化的细胞边界内有丝分裂机制的分子部件之间的动态相互作用。在这里,我们基于四维图像数据生成了人类细胞有丝分裂过程中形态变化的标准模型。我们使用这个模型来整合通过荧光相关光谱校准显微镜成像的许多荧光敲入有丝分裂蛋白的动态三维浓度数据。这里用于生成人类细胞分裂的动态蛋白质图谱的方法是通用的;它可以应用于系统地绘制和挖掘驱动不同细胞类型细胞分裂的动态蛋白质定位网络,并可以在概念上转移到其他细胞功能上。