Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA 18015.
College of Integrative Sciences and Arts, Arizona State University, Mesa, AZ 85212.
Proc Natl Acad Sci U S A. 2018 Oct 2;115(40):9929-9934. doi: 10.1073/pnas.1804177115. Epub 2018 Sep 14.
Proteins that undergo liquid-liquid phase separation (LLPS) have been shown to play a critical role in many physiological functions through formation of condensed liquid-like assemblies that function as membraneless organelles within biological systems. To understand how different proteins may contribute differently to these assemblies and their functions, it is important to understand the molecular driving forces of phase separation and characterize their phase boundaries and material properties. Experimental studies have shown that intrinsically disordered regions of these proteins are a major driving force, as many of them undergo LLPS in isolation. Previous work on polymer solution phase behavior suggests a potential correspondence between intramolecular and intermolecular interactions that can be leveraged to discover relationships between single-molecule properties and phase boundaries. Here, we take advantage of a recently developed coarse-grained framework to calculate the θ temperature [Formula: see text], the Boyle temperature [Formula: see text], and the critical temperature [Formula: see text] for 20 diverse protein sequences, and we show that these three properties are highly correlated. We also highlight that these correlations are not specific to our model or simulation methodology by comparing between different pairwise potentials and with data from other work. We, therefore, suggest that smaller simulations or experiments to determine [Formula: see text] or [Formula: see text] can provide useful insights into the corresponding phase behavior.
已经证明,经历液-液相分离 (LLPS) 的蛋白质通过形成凝聚的液态样组装体在许多生理功能中发挥关键作用,这些组装体在生物系统中充当无膜细胞器。为了了解不同的蛋白质如何以不同的方式为这些组装体及其功能做出贡献,了解相分离的分子驱动力并描述它们的相界和材料特性是很重要的。实验研究表明,这些蛋白质的固有无序区域是一个主要驱动力,因为它们中的许多在分离状态下都会发生 LLPS。先前关于聚合物溶液相行为的工作表明,分子内和分子间相互作用之间可能存在潜在的对应关系,可以利用这些关系来发现单分子特性和相界之间的关系。在这里,我们利用最近开发的粗粒化框架来计算 20 种不同蛋白质序列的θ温度 [Formula: see text]、Boyle 温度 [Formula: see text] 和临界温度 [Formula: see text],并表明这三个特性高度相关。我们还通过比较不同的对势和其他工作的数据来强调,这些相关性不是我们的模型或模拟方法所特有的。因此,我们建议,较小的模拟或实验来确定 [Formula: see text] 或 [Formula: see text] 可以为相应的相行为提供有用的见解。