Suppr超能文献

超越 2D:用于皮肤再生的 3D 生物打印

Beyond 2D: 3D bioprinting for skin regeneration.

机构信息

Tianjin Medical University, Tianjin, China.

Key Laboratory of Tissue Repair and Regeneration of PLA, and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, First Hospital Affiliated to General Hospital of PLA, Beijing, China.

出版信息

Int Wound J. 2019 Feb;16(1):134-138. doi: 10.1111/iwj.13003. Epub 2018 Sep 21.

Abstract

Essential cellular functions that are present in tissues are missed by two-dimensional (2D) cell monolayer culture. It certainly limits their potential to predict the cellular responses of real organisms. Engineering approaches offer solutions to overcome current limitations. For example, establishing a three-dimensional (3D)-based matrix is motivated by the need to mimic the functions of living tissues, which will have a strong impact on regenerative medicine. However, as a novel approach, it requires the development of new standard protocols to increase the efficiency of clinical translation. In this review, we summarised the various aspects of requirements related to well-suited 3D bioprinting techniques for skin regeneration and discussed how to overcome current bottlenecks and propel these therapies into the clinic.

摘要

二维(2D)细胞单层培养会错过组织中存在的基本细胞功能。这确实限制了它们预测真实生物体细胞反应的潜力。工程方法提供了解决当前限制的方案。例如,建立基于三维(3D)的基质是为了模拟活组织的功能,这将对再生医学产生重大影响。然而,作为一种新方法,它需要开发新的标准协议来提高临床转化的效率。在这篇综述中,我们总结了与皮肤再生相关的合适 3D 生物打印技术的各个方面,并讨论了如何克服当前的瓶颈,推动这些疗法进入临床应用。

相似文献

1
Beyond 2D: 3D bioprinting for skin regeneration.
Int Wound J. 2019 Feb;16(1):134-138. doi: 10.1111/iwj.13003. Epub 2018 Sep 21.
2
Biomaterial-based 3D bioprinting strategy for orthopedic tissue engineering.
Acta Biomater. 2023 Jan 15;156:4-20. doi: 10.1016/j.actbio.2022.08.004. Epub 2022 Aug 10.
3
[Progress in application of 3D bioprinting in cartilage regeneration and reconstruction for tissue engineering].
Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2017 Feb 28;42(2):221-225. doi: 10.11817/j.issn.1672-7347.2017.02.017.
4
3D Bioprinting in Skeletal Muscle Tissue Engineering.
Small. 2019 Jun;15(24):e1805530. doi: 10.1002/smll.201805530. Epub 2019 Apr 23.
5
Overcoming big bottlenecks in vascular regeneration.
Commun Biol. 2024 Jul 18;7(1):876. doi: 10.1038/s42003-024-06567-x.
6
The regulatory challenge of 3D bioprinting.
Regen Med. 2023 Aug;18(8):659-674. doi: 10.2217/rme-2022-0194. Epub 2023 Jul 5.
7
Progress in bioprinting technology for tissue regeneration.
J Artif Organs. 2023 Dec;26(4):255-274. doi: 10.1007/s10047-023-01394-z. Epub 2023 Apr 29.
8
Advancing cardiac regeneration through 3D bioprinting: methods, applications, and future directions.
Heart Fail Rev. 2024 May;29(3):599-613. doi: 10.1007/s10741-023-10367-6. Epub 2023 Nov 9.
9
Recent advances in the 3D skin bioprinting for regenerative medicine: Cells, biomaterials, and methods.
J Biomater Appl. 2024 Nov;39(5):421-438. doi: 10.1177/08853282241276799. Epub 2024 Aug 28.
10
Three-dimensional bioprinting of stem-cell derived tissues for human regenerative medicine.
Philos Trans R Soc Lond B Biol Sci. 2018 Jul 5;373(1750). doi: 10.1098/rstb.2017.0224.

引用本文的文献

1
The Future of Alopecia Treatment: Plant Extracts, Nanocarriers, and 3D Bioprinting in Focus.
Pharmaceutics. 2025 Apr 29;17(5):584. doi: 10.3390/pharmaceutics17050584.
2
Skin substitutes: from conventional to 3D bioprinting.
J Artif Organs. 2025 Jun;28(2):154-170. doi: 10.1007/s10047-024-01481-9. Epub 2024 Dec 31.
3
Advancements in 3D skin bioprinting: processes, bioinks, applications and sensor integration.
Int J Extrem Manuf. 2025 Feb 1;7(1):012009. doi: 10.1088/2631-7990/ad878c. Epub 2024 Nov 19.
4
Bioactive materials for sweat gland regeneration.
Bioact Mater. 2023 Aug 16;31:247-271. doi: 10.1016/j.bioactmat.2023.07.025. eCollection 2024 Jan.
5
Advances and Innovations of 3D Bioprinting Skin.
Biomolecules. 2022 Dec 27;13(1):55. doi: 10.3390/biom13010055.
6
3D skin bioprinting: future potential for skin regeneration.
Postepy Dermatol Alergol. 2022 Oct;39(5):845-851. doi: 10.5114/ada.2021.109692. Epub 2021 Oct 4.
7
Applications of the amniotic membrane in tissue engineering and regeneration: the hundred-year challenge.
Stem Cell Res Ther. 2022 Jan 10;13(1):8. doi: 10.1186/s13287-021-02684-0.
8
Three-Dimensional Skin Tissue Printing with Human Skin Cell Lines and Mouse Skin-Derived Epidermal and Dermal Cells.
J Microbiol Biotechnol. 2022 Feb 28;32(2):238-247. doi: 10.4014/jmb.2111.11042.
9
Extrusion-Based Bioprinting of Multilayered Nanocellulose Constructs for Cell Cultivation Using Freezing and Preprint CaCl Cross-Linking.
ACS Omega. 2020 Dec 30;6(1):569-578. doi: 10.1021/acsomega.0c05036. eCollection 2021 Jan 12.

本文引用的文献

1
Interplay between materials and microfluidics.
Nat Rev Mater. 2017 May;2(5). doi: 10.1038/natrevmats.2017.16. Epub 2017 Apr 20.
2
RAP2 mediates mechanoresponses of the Hippo pathway.
Nature. 2018 Aug;560(7720):655-660. doi: 10.1038/s41586-018-0444-0. Epub 2018 Aug 22.
4
Skin bioprinting: a novel approach for creating artificial skin from synthetic and natural building blocks.
Prog Biomater. 2018 Jun;7(2):77-92. doi: 10.1007/s40204-018-0087-0. Epub 2018 May 12.
6
Proof-of-concept: 3D bioprinting of pigmented human skin constructs.
Biofabrication. 2018 Jan 23;10(2):025005. doi: 10.1088/1758-5090/aa9e1e.
7
Skin tissue engineering using 3D bioprinting: An evolving research field.
J Plast Reconstr Aesthet Surg. 2018 May;71(5):615-623. doi: 10.1016/j.bjps.2017.12.006. Epub 2017 Dec 13.
8
3D bioprinting using stem cells.
Pediatr Res. 2018 Jan;83(1-2):223-231. doi: 10.1038/pr.2017.252. Epub 2017 Nov 1.
10
Microfluidic Bioprinting of Heterogeneous 3D Tissue Constructs.
Methods Mol Biol. 2017;1612:369-380. doi: 10.1007/978-1-4939-7021-6_26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验