Suppr超能文献

用于磁共振成像验证的脂肪-水模体:一种灵活且可扩展的方案。

Fat-Water Phantoms for Magnetic Resonance Imaging Validation: A Flexible and Scalable Protocol.

作者信息

Bush Emily C, Gifford Aliya, Coolbaugh Crystal L, Towse Theodore F, Damon Bruce M, Welch E Brian

机构信息

Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center.

Department of Biomedical Informatics, Vanderbilt University Medical Center.

出版信息

J Vis Exp. 2018 Sep 7(139):57704. doi: 10.3791/57704.

Abstract

As new techniques are developed to image adipose tissue, methods to validate such protocols are becoming increasingly important. Phantoms, experimental replicas of a tissue or organ of interest, provide a low cost, flexible solution. However, without access to expensive and specialized equipment, constructing stable phantoms with high fat fractions (e.g., >50% fat fraction levels such as those seen in brown adipose tissue) can be difficult due to the hydrophobic nature of lipids. This work presents a detailed, low cost protocol for creating 5x 100 mL phantoms with fat fractions of 0%, 25%, 50%, 75%, and 100% using basic lab supplies (hotplate, beakers, etc.) and easily accessible components (distilled water, agar, water-soluble surfactant, sodium benzoate, gadolinium-diethylenetriaminepentacetate (DTPA) contrast agent, peanut oil, and oil-soluble surfactant). The protocol was designed to be flexible; it can be used to create phantoms with different fat fractions and a wide range of volumes. Phantoms created with this technique were evaluated in the feasibility study that compared the fat fraction values from fat-water magnetic resonance imaging to the target values in the constructed phantoms. This study yielded a concordance correlation coefficient of 0.998 (95% confidence interval: 0.972-1.00). In summary, these studies demonstrate the utility of fat phantoms for validating adipose tissue imaging techniques across a range of clinically relevant tissues and organs.

摘要

随着用于对脂肪组织进行成像的新技术不断发展,验证此类方案的方法变得越来越重要。体模作为感兴趣的组织或器官的实验复制品,提供了一种低成本、灵活的解决方案。然而,由于无法使用昂贵的专用设备,由于脂质的疏水性,构建高脂肪分数(例如,>50%的脂肪分数水平,如在棕色脂肪组织中所见)的稳定体模可能会很困难。这项工作提出了一种详细的低成本方案,使用基本实验室用品(加热板、烧杯等)和易于获取的成分(蒸馏水、琼脂、水溶性表面活性剂、苯甲酸钠、钆-二乙烯三胺五乙酸(DTPA)造影剂、花生油和油溶性表面活性剂)制作5个100 mL、脂肪分数分别为0%、25%、50%、75%和100%的体模。该方案设计灵活;可用于制作具有不同脂肪分数和各种体积的体模。在可行性研究中对用该技术制作的体模进行了评估,该研究将脂肪-水磁共振成像得到的脂肪分数值与构建体模中的目标值进行了比较。这项研究得出的一致性相关系数为0.998(95%置信区间:0.972 - 1.00)。总之,这些研究证明了脂肪体模在验证一系列临床相关组织和器官的脂肪组织成像技术方面的实用性。

相似文献

2
Influence of Gd-EOB-DTPA on proton density fat fraction using the six-echo Dixon method in 3 Tesla magnetic resonance imaging.
Radiol Phys Technol. 2017 Dec;10(4):483-488. doi: 10.1007/s12194-017-0420-7. Epub 2017 Sep 11.
3
Fat ViP MRI: Virtual Phantom Magnetic Resonance Imaging of water-fat systems.
Magn Reson Imaging. 2016 Jun;34(5):617-23. doi: 10.1016/j.mri.2015.12.002. Epub 2015 Dec 8.
4
Influence of Gd-EOB-DTPA on T1 dependence of the proton density fat fraction using magnetic resonance spectroscopy.
Radiol Phys Technol. 2018 Sep;11(3):338-344. doi: 10.1007/s12194-018-0466-1. Epub 2018 Jun 1.
5
Tissue oxygenation mapping by combined chemical shift and T magnetic resonance imaging.
Magn Reson Med. 2018 Apr;79(4):1981-1991. doi: 10.1002/mrm.26857. Epub 2017 Aug 21.
6
8
Relaxation effects in MRI-based quantification of fat content and fatty acid composition.
Magn Reson Med. 2014 Nov;72(5):1320-9. doi: 10.1002/mrm.25048. Epub 2013 Dec 10.
9
Fat suppression techniques in MRI: an update.
Biomed Pharmacother. 1998;52(2):69-75. doi: 10.1016/S0753-3322(98)80006-1.
10
Measurement of liver fat content using selective saturation at 3.0 T.
J Magn Reson Imaging. 2007 Apr;25(4):743-8. doi: 10.1002/jmri.20865.

引用本文的文献

2
Concurrent water T and fat fraction mapping of the breast using the radial gradient and spin echo (RADGRASE) pulse sequence.
Magn Reson Imaging. 2025 May;118:110355. doi: 10.1016/j.mri.2025.110355. Epub 2025 Feb 5.
5
Parameter optimization for proton density fat fraction quantification in skeletal muscle tissue at 7 T.
MAGMA. 2024 Dec;37(6):969-981. doi: 10.1007/s10334-024-01195-2. Epub 2024 Aug 6.
6
7
Effect of particle size on liver MRI relaxometry: Monte Carlo simulation and phantom studies.
Magn Reson Med. 2024 Oct;92(4):1743-1754. doi: 10.1002/mrm.30154. Epub 2024 May 9.
9
Single-sided magnetic resonance-based sensor for point-of-care evaluation of muscle.
Nat Commun. 2024 Jan 10;15(1):440. doi: 10.1038/s41467-023-44561-9.
10
Free-Breathing Liver Fat, R₂* and B₀ Field Mapping Using Multi-Echo Radial FLASH and Regularized Model-Based Reconstruction.
IEEE Trans Med Imaging. 2023 May;42(5):1374-1387. doi: 10.1109/TMI.2022.3228075. Epub 2023 May 2.

本文引用的文献

1
Influence of Gd-EOB-DTPA on proton density fat fraction using the six-echo Dixon method in 3 Tesla magnetic resonance imaging.
Radiol Phys Technol. 2017 Dec;10(4):483-488. doi: 10.1007/s12194-017-0420-7. Epub 2017 Sep 11.
2
Association of proton density fat fraction in adipose tissue with imaging-based and anthropometric obesity markers in adults.
Int J Obes (Lond). 2018 Feb;42(2):175-182. doi: 10.1038/ijo.2017.194. Epub 2017 Aug 14.
3
Evaluation of six-point modified dixon and magnetic resonance spectroscopy for fat quantification: a fat-water-iron phantom study.
Radiol Phys Technol. 2017 Sep;10(3):349-358. doi: 10.1007/s12194-017-0410-9. Epub 2017 Aug 2.
4
MRI chemical shift imaging of the fat content of the pancreas and liver of patients with type 2 diabetes mellitus.
Exp Ther Med. 2016 Feb;11(2):476-480. doi: 10.3892/etm.2015.2925. Epub 2015 Dec 8.
6
Quantitative MRI and strength measurements in the assessment of muscle quality in Duchenne muscular dystrophy.
Neuromuscul Disord. 2014 May;24(5):409-16. doi: 10.1016/j.nmd.2014.01.015. Epub 2014 Feb 8.
7
Characterization of human brown adipose tissue by chemical-shift water-fat MRI.
AJR Am J Roentgenol. 2013 Jan;200(1):177-83. doi: 10.2214/AJR.12.8996.
8
Liver fat quantification by dual-echo MR imaging outperforms traditional histopathological analysis.
Acad Radiol. 2012 Oct;19(10):1208-14. doi: 10.1016/j.acra.2012.05.009. Epub 2012 Jul 26.
10
Noninvasive quantitation of human liver steatosis using magnetic resonance and bioassay methods.
Eur Radiol. 2009 Aug;19(8):2033-40. doi: 10.1007/s00330-009-1351-4. Epub 2009 Mar 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验