Suppr超能文献

壳聚糖/β-乳球蛋白纳米粒作为表没食子儿茶素没食子酸酯口服给药载体的合成及控释性能

Synthesis and controlled-release properties of chitosan/β-Lactoglobulin nanoparticles as carriers for oral administration of epigallocatechin gallate.

作者信息

Liang Jin, Yan Hua, Yang Han-Joo, Kim Hye Won, Wan Xiaochun, Lee Jinhee, Ko Sanghoon

机构信息

1State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036 China.

2Department of Food Science and Biotechnology, Sejong University, Seoul, 05006 Korea.

出版信息

Food Sci Biotechnol. 2016 Dec 31;25(6):1583-1590. doi: 10.1007/s10068-016-0244-y. eCollection 2016.

Abstract

A nano-sized double-walled carrier composed of chitosan and β-lactoglobulin (β-Lg) for oral administration of epigallocatechin gallate (EGCG) was developed to achieve a prolonged release of EGCG in the gastrointestinal tract. Carboxymethyl chitosan (CMC) solution was added dropwise to chitosan hydrochloride (CHC) containing EGCG to form a primary coating by ionic complexation. Subsequently, β-Lg was added to create a secondary layer by ionic gelation. The obtained EGCG-loaded chitosan/β-Lg nanoparticles had sizes between 100 and 500 nm and zeta potentials ranging from 10 to 35mV. FT-IR spectroscopy revealed a high number of hydrogen-bonding sites in the nanoparticles, which could incorporate EGCG, resulting in high encapsulation efficiency. EGCG incorporated in the primary coating was released slowly over time by diffusion from the swollen CMC-CHC matrix after the outer layer of β-Lg was degraded in the intestinal fluid. The sustained-release property makes chitosan/β-Lg nanoparticles an attractive candidate for effective delivery of EGCG.

摘要

开发了一种由壳聚糖和β-乳球蛋白(β-Lg)组成的纳米级双壁载体,用于口服表没食子儿茶素没食子酸酯(EGCG),以实现EGCG在胃肠道中的缓释。将羧甲基壳聚糖(CMC)溶液滴加到含有EGCG的壳聚糖盐酸盐(CHC)中,通过离子络合形成初级包衣。随后,加入β-Lg通过离子凝胶化形成第二层。所制备的负载EGCG的壳聚糖/β-Lg纳米颗粒尺寸在100至500nm之间,ζ电位在10至35mV范围内。傅里叶变换红外光谱(FT-IR)显示纳米颗粒中有大量氢键位点,可结合EGCG,从而实现高包封率。在肠道液中β-Lg外层降解后,初级包衣中包载的EGCG通过从溶胀的CMC-CHC基质中扩散而随时间缓慢释放。这种缓释特性使壳聚糖/β-Lg纳米颗粒成为有效递送EGCG的有吸引力的候选物。

相似文献

2
Controlled release and antioxidant activity of chitosan and β-lactoglobulin complex nanoparticles loaded with epigallocatechin gallate.
Colloids Surf B Biointerfaces. 2020 Apr;188:110802. doi: 10.1016/j.colsurfb.2020.110802. Epub 2020 Jan 16.
5
Preservation of (-)-epigallocatechin-3-gallate antioxidant properties loaded in heat treated β-lactoglobulin nanoparticles.
J Agric Food Chem. 2012 Apr 4;60(13):3477-84. doi: 10.1021/jf300307t. Epub 2012 Mar 26.
6
pH and temperature stability of (-)-epigallocatechin-3-gallate-β-cyclodextrin inclusion complex-loaded chitosan nanoparticles.
Carbohydr Polym. 2016 Sep 20;149:340-7. doi: 10.1016/j.carbpol.2016.04.100. Epub 2016 Apr 28.
7
Effect of processing on physicochemical characteristics and bioefficacy of β-lactoglobulin-epigallocatechin-3-gallate complexes.
J Agric Food Chem. 2014 Aug 20;62(33):8357-64. doi: 10.1021/jf5029834. Epub 2014 Aug 12.
8
Effect of metal ions on the binding reaction of (-)-epigallocatechin gallate to β-lactoglobulin.
Food Chem. 2017 Apr 15;221:1923-1929. doi: 10.1016/j.foodchem.2016.11.158. Epub 2016 Dec 1.
9
Encapsulation of epigallocatechin gallate in zein/chitosan nanoparticles for controlled applications in food systems.
Food Chem. 2017 Sep 15;231:19-24. doi: 10.1016/j.foodchem.2017.02.106. Epub 2017 Feb 22.
10
Galloyl moieties enhance the binding of (-)-epigallocatechin-3-gallate to β-lactoglobulin: A spectroscopic analysis.
Food Chem. 2017 Dec 15;237:39-45. doi: 10.1016/j.foodchem.2017.05.048. Epub 2017 May 10.

引用本文的文献

1
Enhancing the bioavailability and activity of natural antioxidants with nanobubbles and nanoparticles.
Redox Rep. 2024 Dec;29(1):2333619. doi: 10.1080/13510002.2024.2333619. Epub 2024 Apr 5.
2
Lipid-Based Nanoparticles in Delivering Bioactive Compounds for Improving Therapeutic Efficacy.
Pharmaceuticals (Basel). 2024 Mar 1;17(3):329. doi: 10.3390/ph17030329.
3
Valorization of polyphenolic compounds from food industry by-products for application in polysaccharide-based nanoparticles.
Front Nutr. 2023 May 24;10:1144677. doi: 10.3389/fnut.2023.1144677. eCollection 2023.
4
Polymeric Nanoparticles for Delivery of Natural Bioactive Agents: Recent Advances and Challenges.
Polymers (Basel). 2023 Feb 23;15(5):1123. doi: 10.3390/polym15051123.
5
Preparation and characterization of high embedding efficiency epigallocatechin-3-gallate glycosylated nanocomposites.
Curr Res Food Sci. 2022 Nov 28;6:100399. doi: 10.1016/j.crfs.2022.11.018. eCollection 2023.
9
Application of Polyphenol-Loaded Nanoparticles in Food Industry.
Nanomaterials (Basel). 2019 Nov 16;9(11):1629. doi: 10.3390/nano9111629.
10
Food-grade Encapsulation Systems for (-)-Epigallocatechin Gallate.
Molecules. 2018 Feb 17;23(2):445. doi: 10.3390/molecules23020445.

本文引用的文献

1
Cellular uptake and cytotoxicity of chitosan-caseinophosphopeptides nanocomplexes loaded with epigallocatechin gallate.
Carbohydr Polym. 2012 Jun 20;89(2):362-70. doi: 10.1016/j.carbpol.2012.03.015. Epub 2012 Mar 12.
2
Determining the gelation temperature of β-lactoglobulin using in situ microscopic imaging.
J Dairy Sci. 2013 Sep;96(9):5565-74. doi: 10.3168/jds.2013-6786. Epub 2013 Jul 17.
3
Carboxymethyl chitosan-soy protein complex nanoparticles for the encapsulation and controlled release of vitamin D₃.
Food Chem. 2013 Nov 1;141(1):524-32. doi: 10.1016/j.foodchem.2013.03.043. Epub 2013 Mar 20.
4
Bioactive peptides/chitosan nanoparticles enhance cellular antioxidant activity of (-)-epigallocatechin-3-gallate.
J Agric Food Chem. 2013 Jan 30;61(4):875-81. doi: 10.1021/jf304821k. Epub 2013 Jan 17.
7
In vitro gastric digestion of heat-induced aggregates of β-lactoglobulin.
J Dairy Sci. 2013 Jan;96(1):63-74. doi: 10.3168/jds.2012-5896. Epub 2012 Oct 24.
8
Preservation of (-)-epigallocatechin-3-gallate antioxidant properties loaded in heat treated β-lactoglobulin nanoparticles.
J Agric Food Chem. 2012 Apr 4;60(13):3477-84. doi: 10.1021/jf300307t. Epub 2012 Mar 26.
9
Recent advancement of chitosan-based nanoparticles for oral controlled delivery of insulin and other therapeutic agents.
AAPS PharmSciTech. 2011 Mar;12(1):10-20. doi: 10.1208/s12249-010-9561-2. Epub 2010 Dec 11.
10
Synthesis, characterization and cytotoxicity studies of chitosan-coated tea polyphenols nanoparticles.
Colloids Surf B Biointerfaces. 2011 Feb 1;82(2):297-301. doi: 10.1016/j.colsurfb.2010.08.045. Epub 2010 Sep 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验