Suppr超能文献

用于快速从头测定膜蛋白结构的原位连续晶体学。

In situ serial crystallography for rapid de novo membrane protein structure determination.

作者信息

Huang Chia-Ying, Olieric Vincent, Howe Nicole, Warshamanage Rangana, Weinert Tobias, Panepucci Ezequiel, Vogeley Lutz, Basu Shibom, Diederichs Kay, Caffrey Martin, Wang Meitian

机构信息

Swiss Light Source, Paul Scherrer Institute, CH-5232, Villigen, Switzerland.

Membrane Structural and Functional Biology (MS&FB) Group, School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, D02 R590, Ireland.

出版信息

Commun Biol. 2018 Aug 27;1:124. doi: 10.1038/s42003-018-0123-6. eCollection 2018.

Abstract

De novo membrane protein structure determination is often limited by the availability of large crystals and the difficulties in obtaining accurate diffraction data for experimental phasing. Here we present a method that combines in situ serial crystallography with de novo phasing for fast, efficient membrane protein structure determination. The method enables systematic diffraction screening and rapid data collection from hundreds of microcrystals in in meso crystallization wells without the need for direct crystal harvesting. The requisite data quality for experimental phasing is achieved by accumulating diffraction signals from isomorphous crystals identified post-data collection. The method works in all experimental phasing scenarios and is particularly attractive with fragile, weakly diffracting microcrystals. The automated serial data collection approach can be readily adopted at most microfocus macromolecular crystallography beamlines.

摘要

从头开始确定膜蛋白结构通常受到大晶体可用性的限制,以及在获取用于实验相位确定的准确衍射数据方面存在的困难。在此,我们提出一种将原位串行晶体学与从头相位确定相结合的方法,用于快速、高效地确定膜蛋白结构。该方法能够在中晶结晶孔中对数百个微晶进行系统的衍射筛选和快速数据收集,而无需直接收获晶体。通过积累数据收集后识别出的同晶型晶体的衍射信号,可实现实验相位确定所需的数据质量。该方法适用于所有实验相位确定场景,对于易碎、弱衍射的微晶尤其具有吸引力。大多数微聚焦大分子晶体学光束线都可以很容易地采用这种自动串行数据收集方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb08/6123769/e811f23f243d/42003_2018_123_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验