Suppr超能文献

基于迁移学习的利用视网膜图像进行糖尿病视网膜病变诊断的模型

Transfer Learning-Based Model for Diabetic Retinopathy Diagnosis Using Retinal Images.

作者信息

Jabbar Muhammad Kashif, Yan Jianzhuo, Xu Hongxia, Ur Rehman Zaka, Jabbar Ayesha

机构信息

Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China.

Department of Computer Science and IT, Gujrat Campus, The University of Lahore, Gujrat 50700, Pakistan.

出版信息

Brain Sci. 2022 Apr 22;12(5):535. doi: 10.3390/brainsci12050535.

Abstract

Diabetic retinopathy (DR) is a visual obstacle caused by diabetic disease, which forms because of long-standing diabetes mellitus, which damages the retinal blood vessels. This disease is considered one of the principal causes of sightlessness and accounts for more than 158 million cases all over the world. Since early detection and classification could diminish the visual impairment, it is significant to develop an automated DR diagnosis method. Although deep learning models provide automatic feature extraction and classification, training such models from scratch requires a larger annotated dataset. The availability of annotated training datasets is considered a core issue for implementing deep learning in the classification of medical images. The models based on transfer learning are widely adopted by the researchers to overcome annotated data insufficiency problems and computational overhead. In the proposed study, features are extracted from fundus images using the pre-trained network VGGNet and combined with the concept of transfer learning to improve classification performance. To deal with data insufficiency and unbalancing problems, we employed various data augmentation operations differently on each grade of DR. The results of the experiment indicate that the proposed framework (which is evaluated on the benchmark dataset) outperformed advanced methods in terms of accurateness. Our technique, in combination with handcrafted features, could be used to improve classification accuracy.

摘要

糖尿病视网膜病变(DR)是一种由糖尿病引起的视觉障碍,它是由于长期患糖尿病导致视网膜血管受损而形成的。这种疾病被认为是失明的主要原因之一,全球病例超过1.58亿例。由于早期检测和分类可以减少视力损害,因此开发一种自动的DR诊断方法具有重要意义。尽管深度学习模型能够提供自动特征提取和分类,但从头开始训练此类模型需要更大的带注释数据集。带注释训练数据集的可用性被视为在医学图像分类中实施深度学习的核心问题。基于迁移学习的模型被研究人员广泛采用,以克服带注释数据不足的问题和计算开销。在本研究中,使用预训练网络VGGNet从眼底图像中提取特征,并结合迁移学习的概念来提高分类性能。为了解决数据不足和不平衡问题,我们对DR的每个等级采用了不同的数据增强操作。实验结果表明,所提出的框架(在基准数据集上进行评估)在准确性方面优于先进方法。我们的技术与手工制作的特征相结合,可用于提高分类准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4305/9139157/a4c03b6d29ed/brainsci-12-00535-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验