Suppr超能文献

一种用于标准化图像颜色配置文件以改进基于图像的植物表型分析的自动化高通量方法。

An automated, high-throughput method for standardizing image color profiles to improve image-based plant phenotyping.

作者信息

Berry Jeffrey C, Fahlgren Noah, Pokorny Alexandria A, Bart Rebecca S, Veley Kira M

机构信息

Donald Danforth Plant Science Center, Saint Louis, MO, United States of America.

出版信息

PeerJ. 2018 Oct 4;6:e5727. doi: 10.7717/peerj.5727. eCollection 2018.

Abstract

High-throughput phenotyping has emerged as a powerful method for studying plant biology. Large image-based datasets are generated and analyzed with automated image analysis pipelines. A major challenge associated with these analyses is variation in image quality that can inadvertently bias results. Images are made up of tuples of data called pixels, which consist of R, G, and B values, arranged in a grid. Many factors, for example image brightness, can influence the quality of the image that is captured. These factors alter the values of the pixels within images and consequently can bias the data and downstream analyses. Here, we provide an automated method to adjust an image-based dataset so that brightness, contrast, and color profile is standardized. The correction method is a collection of linear models that adjusts pixel tuples based on a reference panel of colors. We apply this technique to a set of images taken in a high-throughput imaging facility and successfully detect variance within the image dataset. In this case, variation resulted from temperature-dependent light intensity throughout the experiment. Using this correction method, we were able to standardize images throughout the dataset, and we show that this correction enhanced our ability to accurately quantify morphological measurements within each image. We implement this technique in a high-throughput pipeline available with this paper, and it is also implemented in PlantCV.

摘要

高通量表型分析已成为研究植物生物学的一种强大方法。基于图像的大型数据集通过自动化图像分析管道生成并进行分析。与这些分析相关的一个主要挑战是图像质量的变化,这可能会无意中使结果产生偏差。图像由称为像素的数据元组组成,这些像素由排列在网格中的R、G和B值组成。许多因素,例如图像亮度,会影响所捕获图像的质量。这些因素会改变图像内像素的值,从而可能使数据和下游分析产生偏差。在这里,我们提供一种自动化方法来调整基于图像的数据集,以便对亮度、对比度和颜色配置文件进行标准化。校正方法是一组基于颜色参考面板调整像素元组的线性模型。我们将此技术应用于在高通量成像设施中拍摄的一组图像,并成功检测到图像数据集中的差异。在这种情况下,差异是由整个实验中与温度相关的光强度引起的。使用这种校正方法,我们能够对整个数据集中的图像进行标准化,并且我们表明这种校正增强了我们在每个图像中准确量化形态测量的能力。我们在随本文提供的高通量管道中实现了此技术,并且它也在PlantCV中实现。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验