Kelder Cindy, Bakker Astrid Diana, Klein-Nulend Jenneke, Wismeijer Daniël
Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands.
Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands.
J Funct Biomater. 2018 Oct 17;9(4):57. doi: 10.3390/jfb9040057.
Critical-size bone defects are a common clinical problem. The golden standard to treat these defects is autologous bone grafting. Besides the limitations of availability and co-morbidity, autografts have to be manually adapted to fit in the defect, which might result in a sub-optimal fit and impaired healing. Scaffolds with precise dimensions can be created using 3-dimensional (3D) printing, enabling the production of patient-specific, 'tailor-made' bone substitutes with an exact fit. Calcium phosphate (CaP) is a popular material for bone tissue engineering due to its biocompatibility, osteoconductivity, and biodegradable properties. To enhance bone formation, a bioactive 3D-printed CaP scaffold can be created by combining the printed CaP scaffold with biological components such as growth factors and cytokines, e.g., vascular endothelial growth factor (VEGF), bone morphogenetic protein-2 (BMP-2), and interleukin-6 (IL-6). However, the 3D-printing of CaP with a biological component is challenging since production techniques often use high temperatures or aggressive chemicals, which hinders/inactivates the bioactivity of the incorporated biological components. Therefore, in our laboratory, we routinely perform extrusion-based 3D-printing with a biological binder at room temperature to create porous scaffolds for bone healing. In this method paper, we describe in detail a 3D-printing procedure for CaP paste with K-carrageenan as a biological binder.
临界尺寸骨缺损是常见的临床问题。治疗这些缺损的金标准是自体骨移植。除了可用性和合并症的限制外,自体骨还必须手动修整以适应缺损,这可能导致贴合度欠佳和愈合受损。使用三维(3D)打印可以制造出尺寸精确的支架,从而能够生产出与患者匹配的、“量身定制”且贴合度精确的骨替代物。磷酸钙(CaP)因其生物相容性、骨传导性和可生物降解性,是骨组织工程中常用的材料。为促进骨形成,可通过将打印的CaP支架与生物成分如生长因子和细胞因子(例如血管内皮生长因子(VEGF)、骨形态发生蛋白-2(BMP-2)和白细胞介素-6(IL-6))相结合,来制造具有生物活性的3D打印CaP支架。然而,含生物成分的CaP的3D打印具有挑战性,因为生产技术通常使用高温或腐蚀性化学物质,这会阻碍/使掺入的生物成分的生物活性失活。因此,在我们实验室,我们常规在室温下使用生物粘合剂进行基于挤出的3D打印,以制造用于骨愈合的多孔支架。在本方法论文中,我们详细描述了以κ-卡拉胶作为生物粘合剂的CaP糊剂的3D打印程序。