State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
School of Life Sciences, Anhui University, Hefei, Anhui 230601, China.
Curr Drug Metab. 2019 May 22;20(3):229-235. doi: 10.2174/1389200219666181019094526.
Determination or prediction of the Absorption, Distribution, Metabolism, and Excretion (ADME) properties of drug candidates and drug-induced toxicity plays crucial roles in drug discovery and development. Metabolism is one of the most complicated pharmacokinetic properties to be understood and predicted. However, experimental determination of the substrate binding, selectivity, sites and rates of metabolism is time- and recourse- consuming. In the phase I metabolism of foreign compounds (i.e., most of drugs), cytochrome P450 enzymes play a key role. To help develop drugs with proper ADME properties, computational models are highly desired to predict the ADME properties of drug candidates, particularly for drugs binding to cytochrome P450.
This narrative review aims to briefly summarize machine learning techniques used in the prediction of the cytochrome P450 isoform specificity of drug candidates.
Both single-label and multi-label classification methods have demonstrated good performance on modelling and prediction of the isoform specificity of substrates based on their quantitative descriptors.
This review provides a guide for researchers to develop machine learning-based methods to predict the cytochrome P450 isoform specificity of drug candidates.
候选药物的吸收、分布、代谢和排泄(ADME)特性的确定或预测以及药物诱导的毒性在药物发现和开发中起着至关重要的作用。代谢是最复杂的药代动力学特性之一,需要加以理解和预测。然而,候选药物的底物结合、选择性、代谢部位和速率的实验测定既耗时又费资源。在外来化合物(即大多数药物)的 I 期代谢中,细胞色素 P450 酶起着关键作用。为了帮助开发具有适当 ADME 特性的药物,非常需要计算模型来预测候选药物的 ADME 特性,特别是对于与细胞色素 P450 结合的药物。
本综述旨在简要总结用于预测候选药物细胞色素 P450 同工型特异性的机器学习技术。
基于定量描述符,单标签和多标签分类方法都在底物同工型特异性的建模和预测方面表现出了良好的性能。
本综述为研究人员提供了开发基于机器学习的方法来预测候选药物细胞色素 P450 同工型特异性的指南。