Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province and School of Chemistry and Chemical Engineering , Shaanxi Normal University , 620 Xi Chang'an Street , Xi'an , Shaanxi 710119 , People's Republic of China.
Anal Chem. 2018 Nov 20;90(22):13714-13722. doi: 10.1021/acs.analchem.8b04109. Epub 2018 Nov 6.
Chemiluminescence (CL) is an advantageous detection tool for in vivo imaging because of the high signal-to-noise ratio of its optical-signal readout, which does not require an external excitation source. Conjugated polymers (CPs) are now used as an energy acceptor in CL nanoparticles to enhance the CL. Here, we demonstrate CL from the direct oxidation of CP backbones in conjugated-polymer nanoparticles (CPNs) by hypochlorite. Such CL CPNs completely avoid the involvement of small-molecule CL donors. The strategy greatly simplifies CL-probes preparation and increases the stability of CL nanoprobes by overcoming the leakage problem of CL donors in nanoparticles. Hypochlorite can oxidize the vinylene bond (C═C) in polyfluorene-vinylene (PFV)/polyphenylenevinylene (PPV) via π-π cycloaddition to form a PFV- or PPV-dioxetane intermediate that is unstable and can spontaneously degrade into PFV- or PPV-aldehyde and generate photons. The dioxetane-intermediate formation was confirmed by UV-vis-absorption, fluorescence, nuclear-magnetic-resonance (H NMR), and Fourier-transform infrared (FT-IR) spectroscopy. The CL quantum yield (QY) of the brightest CL probe, CPN-poly[(9,9-di(2-ethylhexyl)-9 H-fluorene-2,7-vinylene)- co-(1-methoxy-4-(2-ethylhexyloxy)-2,5-phenylenevinylene)] (90:10 mol ratio, CPN-PFV- co-MEHPV), was 17.79 einsteins/mol (namely, photons per particle). CPN-PFV- co-MEHPV was size-stable, noncytotoxic, selective, and sensitive for hypochlorite detection. The linear range and the LOD of CPN-PFV- co-MEHPV for ClO detection are 2-30 and 0.47 μM. Thus, CPN-PFV- co-MEHPV was successfully applied for in vivo imaging of endogenously produced ClO in living animals. We expect that the represented strategy could be extended to construct other CL nanoprobes for bioimaging and disease diagnosis by simply optimizing and transforming CP backbones; such CL CPNs will have a profound impact on the field of bioimaging.
化学发光(CL)是一种用于体内成像的有利检测工具,因为其光学信号读出的信噪比高,不需要外部激发源。共轭聚合物(CP)现在被用作 CL 纳米粒子中的能量受体,以增强 CL。在这里,我们通过次氯酸盐证明了 CP 骨架在共轭聚合物纳米粒子(CPN)中的直接氧化产生的 CL。这种 CL CPN 完全避免了小分子 CL 供体的参与。该策略通过克服纳米粒子中 CL 供体的泄漏问题,大大简化了 CL 探针的制备,并增加了 CL 纳米探针的稳定性。次氯酸盐可以通过π-π 环加成氧化聚芴-乙烯基(PFV)/聚对苯乙烯基(PPV)中的乙烯基键(C═C),形成 PFV 或 PPV-二恶烷中间体,该中间体不稳定,可自发降解为 PFV 或 PPV-醛并产生光子。通过紫外-可见吸收、荧光、核磁共振(H NMR)和傅里叶变换红外(FT-IR)光谱证实了二恶烷中间体的形成。最亮的 CL 探针,CPN-聚[(9,9-二(2-乙基己基)-9H-芴-2,7-乙烯基)-共-(1-甲氧基-4-(2-乙基己氧基)-2,5-亚苯基乙烯基)](90:10 mol 比,CPN-PFV-共-MEHPV)的 CL 量子产率(QY)为 17.79 爱因斯坦/摩尔(即每个粒子的光子数)。CPN-PFV-共-MEHPV 尺寸稳定、无细胞毒性、选择性和对次氯酸盐检测敏感。CPN-PFV-共-MEHPV 用于 ClO 检测的线性范围和 LOD 分别为 2-30 和 0.47 μM。因此,CPN-PFV-共-MEHPV 成功应用于活体内动物内源性产生的 ClO 的体内成像。我们期望所代表的策略可以通过简单地优化和转化 CP 骨架扩展到构建其他用于生物成像和疾病诊断的 CL 纳米探针;这种 CL CPN 将对生物成像领域产生深远影响。