Suppr超能文献

对来自 的氨基酸丙酮利用微隔间的 ()-1-氨基-2-丙醇激酶的结构和动力学特征进行了表征。

Structural and kinetic characterization of ()-1-amino-2-propanol kinase from the aminoacetone utilization microcompartment of .

机构信息

From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada.

From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada

出版信息

J Biol Chem. 2018 Dec 21;293(51):19909-19918. doi: 10.1074/jbc.RA118.005485. Epub 2018 Oct 25.

Abstract

Bacterial microcompartments encapsulate enzymatic pathways that generate small, volatile, aldehyde intermediates. The and microcompartment (RMM) operon from encodes four enzymes, including ()-1-amino-2-propanol dehydrogenase and a likely propionaldehyde dehydrogenase. We show here that a third enzyme (and its nonmicrocompartment-associated paralog) is a moderately specific ()-1-amino-2-propanol kinase. We determined the structure of apo-aminopropanol kinase at 1.35 Å, revealing that it has structural similarity to hexosamine kinases, choline kinases, and aminoglycoside phosphotransferases. We modeled substrate binding, and tested our model by characterizing key enzyme variants. Bioinformatics analysis established that this enzyme is widespread in Actinobacteria, Proteobacteria, and Firmicutes, and is very commonly associated with a candidate phospholyase. In Rhizobia, aminopropanol kinase is generally associated with aromatic degradation pathways. In the RMM (and the parallel pathway that includes the second paralog), aminopropanol kinase likely degrades aminoacetone through a propanolamine-phosphate phospho-lyase-dependent pathway. These enzymatic activities were originally described in , but the proteins responsible have not been previously identified. Bacterial microcompartments typically co-encapsulate enzymes which can regenerate required co-factors, but the RMM enzymes require four biochemically distinct co-factors with no overlap. This suggests that either the RMM shell can uniquely transport multiple co-factors in stoichiometric quantities, or that all enzymes except the phospho-lyase reside outside of the shell. In summary, aminopropanol kinase is a novel enzyme found in diverse bacteria and multiple metabolic pathways; its presence in the RMM implies that this microcompartment degrades aminoacetone, using a pathway that appears to violate some established precepts as to how microcompartments function.

摘要

细菌微室将产生小的、挥发性醛中间产物的酶途径包裹起来。来自 的 和 微室 (RMM) 操纵子编码四个酶,包括 ()-1-氨基-2-丙醇脱氢酶和可能的丙醛脱氢酶。我们在这里表明,第三种酶(及其非微室相关的旁系同源物)是一种中度特异性的 ()-1-氨基-2-丙醇激酶。我们在 1.35 Å 处确定了脱辅基氨基丙醇激酶的结构,揭示其与己糖胺激酶、胆碱激酶和氨基糖苷磷酸转移酶具有结构相似性。我们模拟了底物结合,并通过表征关键酶变体来测试我们的模型。生物信息学分析表明,这种酶在放线菌、变形菌和厚壁菌门中广泛存在,并且非常常见于候选磷酸裂解酶。在根瘤菌中,氨基丙醇激酶通常与芳香族降解途径有关。在 RMM(和包括第二个旁系同源物的平行途径)中,氨基丙醇激酶可能通过丙醇胺磷酸磷酸裂解酶依赖性途径降解氨基丙酮。这些酶活性最初在 中描述,但以前没有鉴定出负责这些蛋白的酶。细菌微室通常共同包裹可以再生所需辅因子的酶,但 RMM 酶需要四个生化上不同的辅因子,没有重叠。这表明 RMM 壳可以以化学计量的数量独特地运输多种辅因子,或者除磷酸裂解酶外,所有酶都位于壳外。总之,氨基丙醇激酶是一种在多种细菌和多种代谢途径中发现的新型酶;它在 RMM 中的存在表明,这个微室降解氨基丙酮,使用的途径似乎违反了一些关于微室如何发挥作用的既定原则。

相似文献

1
Structural and kinetic characterization of ()-1-amino-2-propanol kinase from the aminoacetone utilization microcompartment of .
J Biol Chem. 2018 Dec 21;293(51):19909-19918. doi: 10.1074/jbc.RA118.005485. Epub 2018 Oct 25.
2
Structure and Kinetics of the S-(+)-1-Amino-2-propanol Dehydrogenase from the RMM Microcompartment of Mycobacterium smegmatis.
Biochemistry. 2018 Jul 3;57(26):3780-3789. doi: 10.1021/acs.biochem.8b00464. Epub 2018 May 23.
5
Comparative Genomic Analysis Reveals Novel Microcompartment-Associated Metabolic Pathways in the Human Gut Microbiome.
Front Genet. 2019 Jul 4;10:636. doi: 10.3389/fgene.2019.00636. eCollection 2019.
6
Characterization of a Glycyl Radical Enzyme Bacterial Microcompartment Pathway in .
J Bacteriol. 2019 Feb 11;201(5). doi: 10.1128/JB.00343-18. Print 2019 Mar 1.
7
Characterization of a novel aromatic substrate-processing microcompartment in Actinobacteria.
mBio. 2023 Aug 31;14(4):e0121623. doi: 10.1128/mbio.01216-23. Epub 2023 Jul 18.
9
A novel trehalase from Mycobacterium smegmatis - purification, properties, requirements.
FEBS J. 2007 Apr;274(7):1701-14. doi: 10.1111/j.1742-4658.2007.05715.x. Epub 2007 Feb 23.

引用本文的文献

1
Electrochemical cofactor recycling of bacterial microcompartments.
Proc Natl Acad Sci U S A. 2024 Dec 3;121(49):e2414220121. doi: 10.1073/pnas.2414220121. Epub 2024 Nov 25.
2
Electrochemical cofactor recycling of bacterial microcompartments.
bioRxiv. 2024 Jul 15:2024.07.15.603600. doi: 10.1101/2024.07.15.603600.
6
Recent structural insights into bacterial microcompartment shells.
Curr Opin Microbiol. 2021 Aug;62:51-60. doi: 10.1016/j.mib.2021.04.007. Epub 2021 May 28.
7
Positioning the Model Bacterial Organelle, the Carboxysome.
mBio. 2021 May 11;12(3):e02519-19. doi: 10.1128/mBio.02519-19.
8
MCPdb: The bacterial microcompartment database.
PLoS One. 2021 Mar 29;16(3):e0248269. doi: 10.1371/journal.pone.0248269. eCollection 2021.
9
Advances in the World of Bacterial Microcompartments.
Trends Biochem Sci. 2021 May;46(5):406-416. doi: 10.1016/j.tibs.2020.12.002. Epub 2021 Jan 11.

本文引用的文献

1
Structure and Kinetics of the S-(+)-1-Amino-2-propanol Dehydrogenase from the RMM Microcompartment of Mycobacterium smegmatis.
Biochemistry. 2018 Jul 3;57(26):3780-3789. doi: 10.1021/acs.biochem.8b00464. Epub 2018 May 23.
2
Assembly principles and structure of a 6.5-MDa bacterial microcompartment shell.
Science. 2017 Jun 23;356(6344):1293-1297. doi: 10.1126/science.aan3289.
4
Structural Basis for Phospholyase Activity of a Class III Transaminase Homologue.
Chembiochem. 2016 Dec 14;17(24):2308-2311. doi: 10.1002/cbic.201600482. Epub 2016 Oct 31.
5
Assembly, function and evolution of cyanobacterial carboxysomes.
Curr Opin Plant Biol. 2016 Jun;31:66-75. doi: 10.1016/j.pbi.2016.03.009. Epub 2016 Apr 6.
6
The Structural Basis of Coenzyme A Recycling in a Bacterial Organelle.
PLoS Biol. 2016 Mar 9;14(3):e1002399. doi: 10.1371/journal.pbio.1002399. eCollection 2016 Mar.
8
Bioinformatic characterization of glycyl radical enzyme-associated bacterial microcompartments.
Appl Environ Microbiol. 2015 Dec;81(24):8315-29. doi: 10.1128/AEM.02587-15. Epub 2015 Sep 25.
9
Enzyme Function Initiative-Enzyme Similarity Tool (EFI-EST): A web tool for generating protein sequence similarity networks.
Biochim Biophys Acta. 2015 Aug;1854(8):1019-37. doi: 10.1016/j.bbapap.2015.04.015. Epub 2015 Apr 18.
10
A taxonomy of bacterial microcompartment loci constructed by a novel scoring method.
PLoS Comput Biol. 2014 Oct 23;10(10):e1003898. doi: 10.1371/journal.pcbi.1003898. eCollection 2014 Oct.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验