Penn State Tobacco Center of Regulatory Science, Pennsylvania State University, Hershey, PA.
Department of Psychology, Virginia Commonwealth University, Richmond, VA.
Nicotine Tob Res. 2020 Apr 21;22(5):699-704. doi: 10.1093/ntr/nty233.
The United States Food and Drug Administration has prioritized understanding the dependence potential of electronic cigarettes (e-cigs). Dependence is often estimated in part by examining frequency of use; however measures of e-cig use are not well developed because of varying product types. This study used an e-cig automatic puff counter to evaluate the value of self-reported e-cig use measures in predicting actual use (puffs).
Data were collected from a two-site randomized placebo-controlled trial evaluating the effects of e-cigs on toxicant exposure in smokers attempting to reduce their cigarette consumption. Participants randomized to an e-cig condition self-reported their e-cig frequency of use (times per day-one "time" consists of around 15 puffs or lasts around 10 minutes) on the Penn State Electronic Cigarette Dependence Index (PSECDI) and kept daily diary records of the number of puffs per day from the e-cig automatic puff counter. A linear mixed-effects model was used to determine the predictive value of the times per day measure. Correlations were used to further investigate the relationship.
A total of 259 participants with 1165 observations of e-cig use were analyzed. Self-reported e-cig use in times per day was a significant predictor of e-cig puffs per day (p < .01). The Spearman correlation between measures was r equal to .58. Examination of individual participant responses revealed some potential difficulties reporting and interpreting times per day because of the difference in use patterns between cigarettes and e-cigs.
This study provides evidence that the self-reported PSECDI measure of times per day is a significant predictor of actual frequency of e-cig puffs taken.
Self-reported measures of e-cig frequency of use are predictive of actual use, but quantifying e-cig use in patterns similar to cigarettes is problematic.
美国食品和药物管理局优先考虑了解电子烟(e-cigs)的依赖潜力。依赖通常部分通过检查使用频率来估计;然而,由于产品类型的不同,电子烟的使用措施尚不完善。本研究使用电子烟自动抽吸计数器来评估自我报告的电子烟使用措施在预测实际使用(抽吸)方面的价值。
数据来自一项两站点随机安慰剂对照试验,该试验评估了电子烟对试图减少吸烟量的吸烟者暴露于有毒物质的影响。随机分配到电子烟组的参与者在宾夕法尼亚州立大学电子烟依赖指数(PSECDI)上报告了他们电子烟的使用频率(每天几次-一次“时间”由大约 15 次抽吸或持续大约 10 分钟组成),并从电子烟自动抽吸计数器中记录每天的抽吸次数。使用线性混合效应模型来确定每天次数测量的预测价值。使用相关性进一步研究了这种关系。
共有 259 名参与者,对电子烟使用进行了 1165 次观察。每天报告的电子烟使用次数是电子烟每天抽吸次数的一个显著预测因素(p <.01)。两种测量方法之间的斯皮尔曼相关系数为 r 等于.58。对个别参与者的反应进行检查后发现,由于香烟和电子烟之间使用模式的差异,报告每天次数可能存在一些困难。
本研究提供了证据,表明自我报告的 PSECDI 每天次数测量是实际电子烟抽吸频率的一个重要预测因素。
自我报告的电子烟使用频率测量是实际使用的预测因素,但在与香烟相似的模式下量化电子烟的使用存在问题。